change file structure

This commit is contained in:
2025-05-27 02:25:39 +03:00
parent 73d0b201f2
commit 11e9fab482
9 changed files with 744 additions and 793 deletions

View File

@@ -115,7 +115,11 @@ set(OMEGA src/SageAnalysisTool/OmegaForSage/add-assert.cpp
set(PRIV src/PrivateAnalyzer/private_analyzer.cpp
src/PrivateAnalyzer/private_analyzer.h
src/PrivateAnalyzer/private_arrays_search.cpp
src/PrivateAnalyzer/private_arrays_search.h)
src/PrivateAnalyzer/private_arrays_search.h
src/PrivateAnalyzer/range_structures.cpp
src/PrivateAnalyzer/range_structures.h
src/PrivateAnalyzer/region.cpp
src/PrivateAnalyzer/region.h)
set(FDVM ${fdvm_sources}/acc.cpp
${fdvm_sources}/acc_across.cpp

View File

@@ -395,7 +395,7 @@ static SAPFOR::Argument* processExpression(SgExpression* ex, vector<IR_Block*>&
if (ex)
{
const int var = ex->variant();
if ((var == VAR_REF || var == CONST_REF || var == LABEL_REF) && !ex->lhs() && !ex->rhs()) // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
if ((var == VAR_REF || var == CONST_REF || var == LABEL_REF) && !ex->lhs() && !ex->rhs()) // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
{
if (var == CONST_REF)
{
@@ -450,7 +450,7 @@ static SAPFOR::Argument* processExpression(SgExpression* ex, vector<IR_Block*>&
return arg1;
auto reg = isLeft ? NULL : createRegister();
Instruction* instr = new Instruction(isLeft ? CFG_OP::STORE : CFG_OP::LOAD, arg1, createConstArg(numArgs), isLeft ? isLeft : reg);
Instruction* instr = new Instruction(isLeft ? CFG_OP::STORE : CFG_OP::LOAD, arg1, createConstArg(numArgs), isLeft ? isLeft : reg, NULL, ex);
blocks.push_back(new IR_Block(instr));
return reg;
}
@@ -485,7 +485,7 @@ static SAPFOR::Argument* processExpression(SgExpression* ex, vector<IR_Block*>&
auto arg1 = arrayRef ? arrayRef : createArrayArg(ref, blocks, func, numArgs, commonVars);
auto reg = isLeft ? NULL : createRegister();
instr = new Instruction(isLeft ? CFG_OP::STORE : CFG_OP::LOAD, arg1, createConstArg(1), isLeft ? isLeft : reg);
instr = new Instruction(isLeft ? CFG_OP::STORE : CFG_OP::LOAD, arg1, createConstArg(1), isLeft ? isLeft : reg, NULL, ex);
blocks.push_back(new IR_Block(instr));
return reg;
}
@@ -602,7 +602,7 @@ static SAPFOR::Argument* processExpression(SgExpression* ex, vector<IR_Block*>&
{
if (returnReg == NULL)
{
Instruction* instr = new Instruction(CFG_OP::LOAD, arg, NULL, reg);
Instruction* instr = new Instruction(CFG_OP::LOAD, arg, NULL, reg, NULL, ex);
blocks.push_back(new IR_Block(instr));
}
else
@@ -1572,7 +1572,7 @@ vector<IR_Block*> buildIR(SgStatement* function, const FuncInfo* func, const vec
else
findReturn(0, blocks.size(), blocks, blocks.back()->getNumber());
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> GOTO <20> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> GOTO <20> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
for (int z = 0; z < blocks.size(); ++z)
{
auto op = blocks[z]->getInstruction()->getOperation();
@@ -1592,7 +1592,7 @@ vector<IR_Block*> buildIR(SgStatement* function, const FuncInfo* func, const vec
blocks[z]->setJump(it->second);
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
arg->setValue(to_string(it->second->getNumber()));
arg->setType(CFG_ARG_TYPE::INSTR);
}

View File

@@ -7,553 +7,19 @@
#include <iostream>
#include "private_arrays_search.h"
#include "range_structures.h"
#include "region.h"
#include "../Utils/SgUtils.h"
#include "../GraphLoop/graph_loops.h"
#include "../CFGraph/CFGraph.h"
using namespace std;
void print_info(LoopGraph* loop)
{
cout << "loopSymbol: " << loop->loopSymbol << endl;
for (const auto& ops : loop->writeOpsForLoop)
{
cout << "Array name: " << ops.first->GetShortName() << endl;
for (const auto i : ops.second)
{
i.printInfo();
}
}
if (!loop->children.empty())
{
for (const auto child : loop->children)
{
print_info(child);
}
}
}
static bool isParentStmt(SgStatement* stmt, SgStatement* parent)
{
for (; stmt; stmt = stmt->controlParent())
if (stmt == parent)
{
return true;
}
return false;
}
/*returns head block and loop*/
pair<SAPFOR::BasicBlock*, unordered_set<SAPFOR::BasicBlock*>> GetBasicBlocksForLoop(const LoopGraph* loop, const vector<SAPFOR::BasicBlock*> blocks)
{
unordered_set<SAPFOR::BasicBlock*> block_loop;
SAPFOR::BasicBlock* head_block = nullptr;
auto loop_operator = loop->loop->GetOriginal();
for (const auto& block : blocks)
{
if (!block || (block->getInstructions().size() == 0))
{
continue;
}
SgStatement* first = block->getInstructions().front()->getInstruction()->getOperator();
SgStatement* last = block->getInstructions().back()->getInstruction()->getOperator();
if (isParentStmt(first, loop_operator) && isParentStmt(last, loop_operator))
{
block_loop.insert(block);
if ((!head_block) && (first == loop_operator) && (last == loop_operator) &&
(block->getInstructions().size() == 2) &&
(block->getInstructions().back()->getInstruction()->getOperation() == SAPFOR::CFG_OP::JUMP_IF))
{
head_block = block;
}
}
}
return { head_block, block_loop };
}
static void BuildLoopIndex(map<string, LoopGraph*>& loopForIndex, LoopGraph* loop) {
string index = loop->loopSymbol;
loopForIndex[index] = loop;
for (const auto& childLoop : loop->children) {
BuildLoopIndex(loopForIndex, childLoop);
}
}
static string FindIndexName(int pos, SAPFOR::BasicBlock* block, map<string, LoopGraph*>& loopForIndex) {
unordered_set<SAPFOR::Argument*> args = {block->getInstructions()[pos]->getInstruction()->getArg1()};
for (int i = pos-1; i >= 0; i--) {
SAPFOR::Argument* res = block->getInstructions()[i]->getInstruction()->getResult();
if (res && args.find(res) != args.end()) {
SAPFOR::Argument* arg1 = block->getInstructions()[i]->getInstruction()->getArg1();
SAPFOR::Argument* arg2 = block->getInstructions()[i]->getInstruction()->getArg2();
if (arg1) {
string name = arg1->getValue();
int idx = name.find('%');
if (idx != -1 && loopForIndex.find(name.substr(idx + 1)) != loopForIndex.end())
return name.substr(idx + 1);
else {
args.insert(arg1);
}
}
if (arg2) {
string name = arg2->getValue();
int idx = name.find('%');
if (idx != -1 && loopForIndex.find(name.substr(idx + 1)) != loopForIndex.end())
return name.substr(idx + 1);
else {
args.insert(arg2);
}
}
}
}
return "";
}
static int GetDefUseArray(SAPFOR::BasicBlock* block, LoopGraph* loop, ArrayAccessingIndexes& def, ArrayAccessingIndexes& use) {
auto instructions = block->getInstructions();
map<string, LoopGraph*> loopForIndex;
BuildLoopIndex(loopForIndex, loop);
for(int i = 0; i < instructions.size(); i++)
{
auto instruction = instructions[i];
if(!instruction->getInstruction()->getArg1()) {
continue;
}
auto operation = instruction->getInstruction()->getOperation();
auto type = instruction->getInstruction()->getArg1()->getType();
if ((operation == SAPFOR::CFG_OP::STORE || operation == SAPFOR::CFG_OP::LOAD) && type == SAPFOR::CFG_ARG_TYPE::ARRAY)
{
vector<SAPFOR::Argument*> index_vars;
vector<int> refPos;
string array_name;
if (operation == SAPFOR::CFG_OP::STORE)
{
array_name = instruction->getInstruction()->getArg1()->getValue();
}
else
{
array_name = instruction->getInstruction()->getArg2()->getValue();
}
int j = i - 1;
while (j >= 0 && instructions[j]->getInstruction()->getOperation() == SAPFOR::CFG_OP::REF)
{
index_vars.push_back(instructions[j]->getInstruction()->getArg1());
refPos.push_back(j);
j--;
}
/*to choose correct dimension*/
int n = index_vars.size();
vector<ArrayDimension> accessPoint(n);
/*if (operation == SAPFOR::CFG_OP::STORE)
{
if (def[array_name].empty())
{
def[array_name].resize(n);
}
}
else
{
if (use[array_name].empty())
{
use[array_name].resize(n);
}
}*/
SgArrayRefExp* ref = (SgArrayRefExp*)instruction->getInstruction()->getExpression();
vector<pair<int, int>> coefsForDims;
for (int i = 0; ref && i < ref->numberOfSubscripts(); ++i)
{
const vector<int*>& coefs = getAttributes<SgExpression*, int*>(ref->subscript(i), set<int>{ INT_VAL });
if (coefs.size() == 1)
{
const pair<int, int> coef(coefs[0][0], coefs[0][1]);
coefsForDims.push_back(coef);
}
}
cout << coefsForDims.size() << endl;
while (!index_vars.empty())
{
auto var = index_vars.back();
int currentVarPos = refPos.back();
pair currentCoefs = coefsForDims.back();
ArrayDimension current_dim;
if (var->getType() == SAPFOR::CFG_ARG_TYPE::CONST) {
current_dim = { stoul(var->getValue()), 1, 1 };
}
else
{
string name, full_name = var->getValue();
int pos = full_name.find('%');
LoopGraph* currentLoop;
if (pos != -1) {
name = full_name.substr(pos+1);
if (loopForIndex.find(name) != loopForIndex.end()) {
currentLoop = loopForIndex[name];
}
else {
return -1;
}
}
else {
name = FindIndexName(currentVarPos, block, loopForIndex);
if (name == "") {
return -1;
}
if (loopForIndex.find(name) != loopForIndex.end()) {
currentLoop = loopForIndex[name];
}
else {
return -1;
}
}
uint64_t start = currentLoop->startVal * currentCoefs.first + currentCoefs.second;
uint64_t step = currentCoefs.first;
current_dim = { start, step, (uint64_t)currentLoop->calculatedCountOfIters };
}
/*if (operation == SAPFOR::CFG_OP::STORE)
{
def[array_name][n - index_vars.size()].push_back(current_dim);
}
else
{
use[array_name][n - index_vars.size()].push_back(current_dim);
}*/
accessPoint[n - index_vars.size()] = current_dim;
index_vars.pop_back();
refPos.pop_back();
coefsForDims.pop_back();
}
if (operation == SAPFOR::CFG_OP::STORE)
{
def[array_name].Insert(accessPoint);
}
else
{
use[array_name].Insert(accessPoint);
}
}
}
return 0;
}
static vector<uint64_t> FindParticularSolution(const ArrayDimension& dim1, const ArrayDimension& dim2)
{
for (uint64_t i = 0; i < dim1.tripCount; i++)
{
uint64_t leftPart = dim1.start + i * dim1.step;
for (uint64_t j = 0; j < dim2.tripCount; j++)
{
uint64_t rightPart = dim2.start + j * dim2.step;
if (leftPart == rightPart)
{
return {i, j};
}
}
}
return {};
}
/* dim1 /\ dim2 */
static ArrayDimension* DimensionIntersection(const ArrayDimension& dim1, const ArrayDimension& dim2)
{
vector<uint64_t> partSolution = FindParticularSolution(dim1, dim2);
if (partSolution.empty())
{
return NULL;
}
int64_t x0 = partSolution[0], y0 = partSolution[1];
/* x = x_0 + c * t */
/* y = y_0 + d * t */
int64_t c = dim2.step / gcd(dim1.step, dim2.step);
int64_t d = dim1.step / gcd(dim1.step, dim2.step);
int64_t tXMin, tXMax, tYMin, tYMax;
tXMin = -x0 / c;
tXMax = (dim1.tripCount - 1 - x0) / c;
tYMin = -y0 / d;
tYMax = (dim2.tripCount - 1 - y0) / d;
int64_t tMin = max(tXMin, tYMin);
uint64_t tMax = min(tXMax, tYMax);
if (tMin > tMax)
{
return NULL;
}
uint64_t start3 = dim1.start + x0 * dim1.step;
uint64_t step3 = c * dim1.step;
ArrayDimension* result = new(ArrayDimension){ start3, step3, tMax + 1 };
return result;
}
/* dim1 / dim2 */
static vector<ArrayDimension> DimensionDifference(const ArrayDimension& dim1, const ArrayDimension& dim2)
{
ArrayDimension* intersection = DimensionIntersection(dim1, dim2);
if (!intersection)
{
return {dim1};
}
vector<ArrayDimension> result;
/* add the part before intersection */
if (dim1.start < intersection->start)
{
result.push_back({ dim1.start, dim1.step, (intersection->start - dim1.start) / dim1.step });
}
/* add the parts between intersection steps */
uint64_t start = (intersection->start - dim1.start) / dim1.step;
uint64_t interValue = intersection->start;
for (int64_t i = start; dim1.start + i * dim1.step <= intersection->start + intersection->step * (intersection->tripCount - 1); i++)
{
uint64_t centerValue = dim1.start + i * dim1.step;
if (centerValue == interValue)
{
if (i - start > 1)
{
result.push_back({ dim1.start + (start + 1) * dim1.step, dim1.step, i - start - 1 });
start = i;
}
interValue += intersection->step;
}
}
/* add the part after intersection */
if (intersection->start + intersection->step * (intersection->tripCount - 1) < dim1.start + dim1.step * (dim1.tripCount - 1))
{
/* first value after intersection */
uint64_t right_start = intersection->start + intersection->step * (intersection->tripCount - 1) + dim1.step;
uint64_t tripCount = (dim1.start + dim1.step * dim1.tripCount - right_start) / dim1.step;
result.push_back({right_start, dim1.step, tripCount});
}
delete(intersection);
return result;
}
static vector<ArrayDimension> DimensionUnion(const ArrayDimension& dim1, const ArrayDimension& dim2)
{
vector<ArrayDimension> res;
ArrayDimension* inter = DimensionIntersection(dim1, dim2);
if(!inter)
{
return { dim1, dim2 };
}
res.push_back(*inter);
delete(inter);
vector<ArrayDimension> diff1, diff2;
diff1 = DimensionDifference(dim1, dim2);
diff2 = DimensionDifference(dim2, dim1);
res.insert(res.end(), diff1.begin(), diff1.end());
res.insert(res.end(), diff2.begin(), diff2.end());
return res;
}
static vector<ArrayDimension> ElementsIntersection(const vector<ArrayDimension>& firstElement, const vector<ArrayDimension>& secondElement)
{
if(firstElement.empty() || secondElement.empty()) {
return {};
}
size_t dimAmount = firstElement.size();
/* check if there is no intersecction */
for(size_t i = 0; i < dimAmount; i++)
{
if(FindParticularSolution(firstElement[i], secondElement[i]).empty()){
return {};
}
}
vector<ArrayDimension> result(dimAmount);
for(size_t i = 0; i < dimAmount; i++)
{
ArrayDimension* resPtr = DimensionIntersection(firstElement[i], secondElement[i]);
if(resPtr)
{
result[i] = *resPtr;
}
else
{
return {};
}
}
return result;
}
static vector<vector<ArrayDimension>> ElementsDifference(const vector<ArrayDimension>& firstElement,
const vector<ArrayDimension>& secondElement)
{
if(firstElement.empty() || secondElement.empty()) {
return {};
}
vector<ArrayDimension> intersection = ElementsIntersection(firstElement, secondElement);
vector<vector<ArrayDimension>> result;
if(intersection.empty())
{
return {firstElement};
}
for(int i = 0; i < firstElement.size(); i++)
{
auto dimDiff = DimensionDifference(firstElement[i], secondElement[i]);
if(!dimDiff.empty())
{
vector<ArrayDimension> firstCopy = firstElement;
for(const auto& range: dimDiff)
{
firstCopy[i] = range;
result.push_back(firstCopy);
}
}
}
return result;
}
static void ElementsUnion(const vector<ArrayDimension>& firstElement, const vector<ArrayDimension>& secondElement,
vector<vector<ArrayDimension>>& lc, vector<vector<ArrayDimension>>& rc,
vector<ArrayDimension>& intersection)
{
/* lc(rc) is a set of ranges, which only exist in first(second) element*/
intersection = ElementsIntersection(firstElement, secondElement);
lc = ElementsDifference(firstElement, intersection);
rc = ElementsDifference(secondElement, intersection);
}
void AccessingSet::FindUncovered(const vector<ArrayDimension>& element, vector<vector<ArrayDimension>>& result) const{
vector<vector<ArrayDimension>> newTails;
result.push_back(element);
for(const auto& currentElement: allElements)
{
for(const auto& tailLoc: result)
{
auto intersection = ElementsIntersection(tailLoc, currentElement);
auto diff = ElementsDifference(tailLoc, intersection);
if(!diff.empty()) {
newTails.insert(newTails.end(), diff.begin(), diff.end());
}
}
result = move(newTails);
}
}
bool AccessingSet::ContainsElement(const vector<ArrayDimension>& element) const
{
vector<vector<ArrayDimension>> tails;
FindUncovered(element, tails);
return !tails.empty();
}
void AccessingSet::FindCoveredBy(const vector<ArrayDimension>& element, vector<vector<ArrayDimension>>& result) const
{
for(const auto& currentElement: allElements)
{
auto intersection = ElementsIntersection(element, currentElement);
if(!intersection.empty()) {
result.push_back(intersection);
}
}
}
vector<vector<ArrayDimension>> AccessingSet::GetElements() const
{
return allElements;
}
void AccessingSet::Insert(const vector<ArrayDimension>& element)
{
vector<vector<ArrayDimension>> tails;
FindUncovered(element, tails);
allElements.insert(allElements.end(), tails.begin(), tails.end());
}
AccessingSet AccessingSet::Union(const AccessingSet& source) {
AccessingSet result;
for(auto& element: source.GetElements()) {
result.Insert(element);
}
return result;
}
AccessingSet AccessingSet::Intersect(const AccessingSet& secondSet) const
{
vector<vector<ArrayDimension>> result;
for(const auto& element: allElements)
{
if(secondSet.ContainsElement(element))
{
result.push_back(element);
}
else
{
vector<vector<ArrayDimension>> coveredBy;
secondSet.FindCoveredBy(element, coveredBy);
if(!coveredBy.empty())
{
result.insert(result.end(), coveredBy.begin(), coveredBy.end());
}
}
}
return AccessingSet(result);
}
AccessingSet AccessingSet::Diff(const AccessingSet& secondSet) const
{
AccessingSet intersection = this->Intersect(secondSet);
AccessingSet uncovered = *this;
vector<vector<ArrayDimension>> result;
for (const auto& element : intersection.GetElements())
{
vector<vector<ArrayDimension>> current_uncovered;
uncovered.FindUncovered(element, current_uncovered);
uncovered = AccessingSet(current_uncovered);
}
return uncovered;
}
static bool operator!=(const ArrayDimension& lhs, const ArrayDimension& rhs)
{
return !(lhs.start == rhs.start && lhs.step == rhs.step && lhs.tripCount == rhs.tripCount);
}
static bool operator!=(const AccessingSet& lhs, const AccessingSet& rhs)
{
for (size_t i = 0; i < lhs.allElements.size(); i++)
{
for (size_t j = 0; j < lhs.allElements[i].size(); j++)
{
if (lhs.allElements[i][j] != rhs.allElements[i][j])
{
return true;
}
}
}
return false;
}
static bool operator!=(const ArrayAccessingIndexes& lhs, const ArrayAccessingIndexes& rhs)
{
if(lhs.size() != rhs.size())
{
return true;
}
for(auto& [key, value]: lhs)
{
if(rhs.find(key) == rhs.end())
{
return true;
}
}
return false;
}
void Collapse(Region* region)
{
if (region->getBasickBlocks().empty())
return;
else
{
cout << region->getBasickBlocks().size();
}
for (auto& [arrayName, arrayRanges] : region->getHeader()->array_out)
{
for (Region* byBlock : region->getBasickBlocks())
@@ -592,71 +58,6 @@ void Collapse(Region* region)
{
nextBlock->replaceInPrevRegions(region, region->getHeader());
}
for (Region* bb : region->getBasickBlocks())
{
delete(bb);
}
cout << "Collapse\n";
}
static void SetConnections(unordered_map<SAPFOR::BasicBlock*, Region*>& bbToRegion, const unordered_set<SAPFOR::BasicBlock*>& blockSet)
{
for (SAPFOR::BasicBlock* block : blockSet)
{
for (SAPFOR::BasicBlock* nextBlock : block->getNext())
{
if (bbToRegion.find(nextBlock) != bbToRegion.end())
{
bbToRegion[block]->addNextRegion(bbToRegion[nextBlock]);
}
}
for (SAPFOR::BasicBlock* prevBlock : block->getPrev())
{
if (bbToRegion.find(prevBlock) != bbToRegion.end())
{
bbToRegion[block]->addPrevRegion(bbToRegion[prevBlock]);
}
}
}
}
static Region* CreateSubRegion(LoopGraph* loop, const vector<SAPFOR::BasicBlock*>& Blocks, const unordered_map<SAPFOR::BasicBlock*, Region*>& bbToRegion)
{
Region* region = new Region;
auto [header, blockSet] = GetBasicBlocksForLoop(loop, Blocks);
for (SAPFOR::BasicBlock* block : Blocks)
{
if (bbToRegion.find(block) != bbToRegion.end())
{
region->addBasickBlocks(bbToRegion.at(block));
}
}
for (LoopGraph* childLoop : loop->children)
{
region->addSubRegions(CreateSubRegion(childLoop, Blocks, bbToRegion));
}
return region;
}
Region::Region(LoopGraph* loop, const vector<SAPFOR::BasicBlock*>& Blocks)
{
auto [header, blockSet] = GetBasicBlocksForLoop(loop, Blocks);
unordered_map<SAPFOR::BasicBlock*, Region*> bbToRegion;
for (auto poiner : blockSet)
{
bbToRegion[poiner] = new Region(*poiner);
this->basickBlocks.insert(bbToRegion[poiner]);
ArrayAccessingIndexes def, use;
GetDefUseArray(poiner, loop, bbToRegion[poiner]->array_def, bbToRegion[poiner]->array_use);
}
this->header = bbToRegion[header];
SetConnections(bbToRegion, blockSet);
//create subRegions
for (LoopGraph* childLoop : loop->children)
{
subRegions.insert(CreateSubRegion(childLoop, Blocks, bbToRegion));
}
}
static void SolveDataFlowIteratively(Region* DFG)
@@ -666,8 +67,21 @@ static void SolveDataFlowIteratively(Region* DFG)
{
Region* b = *worklist.begin();
ArrayAccessingIndexes newIn;
bool flagFirst = true;
for (Region* prevBlock : b->getPrevRegions())
{
if (flagFirst)
{
newIn = prevBlock->array_out;
flagFirst = false;
}
else
{
if (prevBlock->array_out.empty())
{
newIn.clear();
continue;
}
for (const auto& [arrayName, accessSet] : prevBlock->array_out)
{
if (newIn.find(arrayName) != newIn.end())
@@ -676,12 +90,23 @@ static void SolveDataFlowIteratively(Region* DFG)
}
else
{
newIn[arrayName] = accessSet;
newIn[arrayName] = AccessingSet();
}
}
}
b->array_in = newIn;
}
b->array_in = move(newIn);
ArrayAccessingIndexes newOut;
if (b->array_def.empty())
{
newOut = b->array_in;
}
else if (b->array_in.empty())
{
newOut = b->array_def;
}
else
{
for (auto& [arrayName, accessSet] : b->array_def)
{
if (newOut.find(arrayName) != newOut.end())
@@ -693,6 +118,7 @@ static void SolveDataFlowIteratively(Region* DFG)
newOut[arrayName] = accessSet;
}
}
}
/* can not differ */
if (newOut != b->array_out)
{
@@ -704,18 +130,18 @@ static void SolveDataFlowIteratively(Region* DFG)
}
}
while (!worklist.empty());
cout << "solveDFIt\n";
}
static void SolveDataFlow(Region* DFG)
{
if (!DFG)
return;
SolveDataFlowIteratively(DFG);
for (Region* subRegion : DFG->getSubRegions())
{
SolveDataFlow(subRegion);
}
Collapse(DFG);
cout << "SolveDF\n";
}
map<LoopGraph*, ArrayAccessingIndexes> FindPrivateArrays(map<string, vector<LoopGraph*>> &loopGraph, map<FuncInfo*, vector<SAPFOR::BasicBlock*>>& FullIR)
@@ -727,17 +153,6 @@ map<LoopGraph*, ArrayAccessingIndexes> FindPrivateArrays(map<string, vector<Loo
{
for (const auto& [funcInfo, blocks]: FullIR)
{
//
for (auto& bb : blocks)
{
ArrayAccessingIndexes def, use;
if (bb->getNumber() == 4)
{
GetDefUseArray(bb, loop, def, use);
return {};
}
}
//
Region* loopRegion = new Region(loop, blocks);
SolveDataFlow(loopRegion);
result[loop] = loopRegion->array_priv;
@@ -745,47 +160,5 @@ map<LoopGraph*, ArrayAccessingIndexes> FindPrivateArrays(map<string, vector<Loo
}
}
}
vector<ArrayDimension> A = { {1, 1, 2}, {0, 1, 6} };
vector<ArrayDimension> B = { {0, 1, 6}, {2, 1, 2} };
vector<ArrayDimension> C = { {1, 1, 2}, {2, 1, 2} };
return result;
}
void GetDimensionInfo(LoopGraph* loop, map<DIST::Array*, vector<vector<ArrayDimension>>>& loopDimensionsInfo, int level)
{
cout << "line_num: " << loop->lineNum << endl;
for (const auto& writeOpPairs : loop->writeOpsForLoop)
{
vector<vector<ArrayDimension>> arrayDimensions(writeOpPairs.first->GetDimSize());
loopDimensionsInfo[writeOpPairs.first] = arrayDimensions;
for (const auto& writeOp : writeOpPairs.second)
{
for (const auto& coeficient_pair : writeOp.coefficients)
{
uint64_t start, step, tripCount;
start = loop->startVal * coeficient_pair.first.first + coeficient_pair.first.second;
step = loop->stepVal * coeficient_pair.first.first;
tripCount = (loop->endVal - coeficient_pair.first.second) / step;
if (start <= loop->endVal)
{
loopDimensionsInfo[writeOpPairs.first][level].push_back({start, step, tripCount});
cout << "level: " << level << endl;
cout << "start: " << start << endl;
cout << "step: " << step << endl;
cout << "trip_count: " << tripCount << endl;
cout << endl;
}
}
}
}
cout << "line_num_after: " << loop->lineNumAfterLoop << endl;
if (!loop->children.empty())
{
for (const auto& childLoop : loop->children)
{
GetDimensionInfo(childLoop, loopDimensionsInfo, level+1);
}
}
}

View File

@@ -4,118 +4,11 @@
#include<map>
#include<unordered_set>
#include "range_structures.h"
#include "region.h"
#include "../GraphLoop/graph_loops.h"
#include "../CFGraph/CFGraph.h"
struct ArrayDimension
{
uint64_t start, step, tripCount;
};
class AccessingSet {
private:
std::vector<std::vector<ArrayDimension>> allElements;
public:
AccessingSet(std::vector<std::vector<ArrayDimension>> input) : allElements(input) {};
AccessingSet() {};
std::vector<std::vector<ArrayDimension>> GetElements() const;
void Insert(const std::vector<ArrayDimension>& element);
AccessingSet Union(const AccessingSet& source);
AccessingSet Intersect(const AccessingSet& secondSet) const;
AccessingSet Diff(const AccessingSet& secondSet) const;
bool ContainsElement(const std::vector<ArrayDimension>& element) const;
void FindCoveredBy(const std::vector<ArrayDimension>& element, std::vector<std::vector<ArrayDimension>>& result) const;
void FindUncovered(const std::vector<ArrayDimension>& element, std::vector<std::vector<ArrayDimension>>& result) const;
friend bool operator!=(const AccessingSet& lhs, const AccessingSet& rhs);
};
using ArrayAccessingIndexes = std::map<std::string, AccessingSet>;
class Region: public SAPFOR::BasicBlock {
public:
Region()
{
header = nullptr;
}
Region(SAPFOR::BasicBlock block) : SAPFOR::BasicBlock::BasicBlock(block)
{
header = nullptr;
}
Region(LoopGraph* loop, const std::vector<SAPFOR::BasicBlock*>& Blocks);
Region* getHeader()
{
return header;
}
std::unordered_set<Region*>& getBasickBlocks()
{
return basickBlocks;
}
void addBasickBlocks(Region* region)
{
basickBlocks.insert(region);
}
std::unordered_set<Region*> getPrevRegions()
{
return prevRegions;
}
std::unordered_set<Region*> getNextRegions()
{
return nextRegions;
}
void addPrevRegion(Region* region)
{
prevRegions.insert(region);
}
void addNextRegion(Region* region)
{
nextRegions.insert(region);
}
void replaceInPrevRegions(Region* source, Region* destination)
{
prevRegions.erase(destination);
prevRegions.insert(source);
}
void replaceInNextRegions(Region* source, Region* destination)
{
nextRegions.erase(destination);
nextRegions.insert(source);
}
std::unordered_set<Region*> getSubRegions()
{
return subRegions;
}
void addSubRegions(Region* region)
{
subRegions.insert(region);
}
ArrayAccessingIndexes array_def, array_use, array_out, array_in, array_priv;
private:
std::unordered_set<Region*> subRegions, basickBlocks;
/*next Region which is BB for current BB Region*/
std::unordered_set<Region*> nextRegions;
/*prev Regions which is BBs for current BB Region*/
std::unordered_set<Region*> prevRegions;
Region* header;
};
void Collapse(Region* region);
std::map<LoopGraph*, ArrayAccessingIndexes> FindPrivateArrays(std::map<std::string, std::vector<LoopGraph*>>& loopGraph, std::map<FuncInfo*, std::vector<SAPFOR::BasicBlock*>>& FullIR);
void GetDimensionInfo(LoopGraph* loop, std::map<DIST::Array*, std::vector<std::vector<ArrayDimension>>>& loopDimensionsInfo, int level);
std::pair<SAPFOR::BasicBlock*, std::unordered_set<SAPFOR::BasicBlock*>> GetBasicBlocksForLoop(const LoopGraph* loop, const std::vector<SAPFOR::BasicBlock*> blocks);

View File

@@ -0,0 +1,317 @@
#include<vector>
#include<map>
#include<unordered_set>
#include<string>
#include <numeric>
#include "range_structures.h"
using namespace std;
static vector<uint64_t> FindParticularSolution(const ArrayDimension& dim1, const ArrayDimension& dim2)
{
for (uint64_t i = 0; i < dim1.tripCount; i++)
{
uint64_t leftPart = dim1.start + i * dim1.step;
for (uint64_t j = 0; j < dim2.tripCount; j++)
{
uint64_t rightPart = dim2.start + j * dim2.step;
if (leftPart == rightPart)
{
return { i, j };
}
}
}
return {};
}
/* dim1 /\ dim2 */
static ArrayDimension* DimensionIntersection(const ArrayDimension& dim1, const ArrayDimension& dim2)
{
vector<uint64_t> partSolution = FindParticularSolution(dim1, dim2);
if (partSolution.empty())
{
return NULL;
}
int64_t x0 = partSolution[0], y0 = partSolution[1];
/* x = x_0 + c * t */
/* y = y_0 + d * t */
int64_t c = dim2.step / gcd(dim1.step, dim2.step);
int64_t d = dim1.step / gcd(dim1.step, dim2.step);
int64_t tXMin, tXMax, tYMin, tYMax;
tXMin = -x0 / c;
tXMax = (dim1.tripCount - 1 - x0) / c;
tYMin = -y0 / d;
tYMax = (dim2.tripCount - 1 - y0) / d;
int64_t tMin = max(tXMin, tYMin);
uint64_t tMax = min(tXMax, tYMax);
if (tMin > tMax)
{
return NULL;
}
uint64_t start3 = dim1.start + x0 * dim1.step;
uint64_t step3 = c * dim1.step;
ArrayDimension* result = new(ArrayDimension){ start3, step3, tMax + 1 };
return result;
}
/* dim1 / dim2 */
static vector<ArrayDimension> DimensionDifference(const ArrayDimension& dim1, const ArrayDimension& dim2)
{
ArrayDimension* intersection = DimensionIntersection(dim1, dim2);
if (!intersection)
{
return { dim1 };
}
vector<ArrayDimension> result;
/* add the part before intersection */
if (dim1.start < intersection->start)
{
result.push_back({ dim1.start, dim1.step, (intersection->start - dim1.start) / dim1.step });
}
/* add the parts between intersection steps */
uint64_t start = (intersection->start - dim1.start) / dim1.step;
uint64_t interValue = intersection->start;
for (int64_t i = start; dim1.start + i * dim1.step <= intersection->start + intersection->step * (intersection->tripCount - 1); i++)
{
uint64_t centerValue = dim1.start + i * dim1.step;
if (centerValue == interValue)
{
if (i - start > 1)
{
result.push_back({ dim1.start + (start + 1) * dim1.step, dim1.step, i - start - 1 });
start = i;
}
interValue += intersection->step;
}
}
/* add the part after intersection */
if (intersection->start + intersection->step * (intersection->tripCount - 1) < dim1.start + dim1.step * (dim1.tripCount - 1))
{
/* first value after intersection */
uint64_t right_start = intersection->start + intersection->step * (intersection->tripCount - 1) + dim1.step;
uint64_t tripCount = (dim1.start + dim1.step * dim1.tripCount - right_start) / dim1.step;
result.push_back({ right_start, dim1.step, tripCount });
}
delete(intersection);
return result;
}
static vector<ArrayDimension> DimensionUnion(const ArrayDimension& dim1, const ArrayDimension& dim2)
{
vector<ArrayDimension> res;
ArrayDimension* inter = DimensionIntersection(dim1, dim2);
if (!inter)
{
return { dim1, dim2 };
}
res.push_back(*inter);
delete(inter);
vector<ArrayDimension> diff1, diff2;
diff1 = DimensionDifference(dim1, dim2);
diff2 = DimensionDifference(dim2, dim1);
res.insert(res.end(), diff1.begin(), diff1.end());
res.insert(res.end(), diff2.begin(), diff2.end());
return res;
}
static vector<ArrayDimension> ElementsIntersection(const vector<ArrayDimension>& firstElement, const vector<ArrayDimension>& secondElement)
{
if (firstElement.empty() || secondElement.empty()) {
return {};
}
size_t dimAmount = firstElement.size();
/* check if there is no intersecction */
for (size_t i = 0; i < dimAmount; i++)
{
if (FindParticularSolution(firstElement[i], secondElement[i]).empty()) {
return {};
}
}
vector<ArrayDimension> result(dimAmount);
for (size_t i = 0; i < dimAmount; i++)
{
ArrayDimension* resPtr = DimensionIntersection(firstElement[i], secondElement[i]);
if (resPtr)
{
result[i] = *resPtr;
}
else
{
return {};
}
}
return result;
}
static vector<vector<ArrayDimension>> ElementsDifference(const vector<ArrayDimension>& firstElement,
const vector<ArrayDimension>& secondElement)
{
if (firstElement.empty() || secondElement.empty()) {
return {};
}
vector<ArrayDimension> intersection = ElementsIntersection(firstElement, secondElement);
vector<vector<ArrayDimension>> result;
if (intersection.empty())
{
return { firstElement };
}
for (int i = 0; i < firstElement.size(); i++)
{
auto dimDiff = DimensionDifference(firstElement[i], secondElement[i]);
if (!dimDiff.empty())
{
vector<ArrayDimension> firstCopy = firstElement;
for (const auto& range : dimDiff)
{
firstCopy[i] = range;
result.push_back(firstCopy);
}
}
}
return result;
}
static void ElementsUnion(const vector<ArrayDimension>& firstElement, const vector<ArrayDimension>& secondElement,
vector<vector<ArrayDimension>>& lc, vector<vector<ArrayDimension>>& rc,
vector<ArrayDimension>& intersection)
{
/* lc(rc) is a set of ranges, which only exist in first(second) element*/
intersection = ElementsIntersection(firstElement, secondElement);
lc = ElementsDifference(firstElement, intersection);
rc = ElementsDifference(secondElement, intersection);
}
void AccessingSet::FindUncovered(const vector<ArrayDimension>& element, vector<vector<ArrayDimension>>& result) const {
vector<vector<ArrayDimension>> newTails;
result.push_back(element);
for (const auto& currentElement : allElements)
{
for (const auto& tailLoc : result)
{
auto intersection = ElementsIntersection(tailLoc, currentElement);
auto diff = ElementsDifference(tailLoc, intersection);
if (!diff.empty()) {
newTails.insert(newTails.end(), diff.begin(), diff.end());
}
}
result = move(newTails);
}
}
bool AccessingSet::ContainsElement(const vector<ArrayDimension>& element) const
{
vector<vector<ArrayDimension>> tails;
FindUncovered(element, tails);
return !tails.empty();
}
void AccessingSet::FindCoveredBy(const vector<ArrayDimension>& element, vector<vector<ArrayDimension>>& result) const
{
for (const auto& currentElement : allElements)
{
auto intersection = ElementsIntersection(element, currentElement);
if (!intersection.empty()) {
result.push_back(intersection);
}
}
}
vector<vector<ArrayDimension>> AccessingSet::GetElements() const { return allElements; }
void AccessingSet::Insert(const vector<ArrayDimension>& element)
{
vector<vector<ArrayDimension>> tails;
FindUncovered(element, tails);
allElements.insert(allElements.end(), tails.begin(), tails.end());
}
AccessingSet AccessingSet::Union(const AccessingSet& source) {
AccessingSet result;
for (auto& element : source.GetElements()) {
result.Insert(element);
}
for (auto& element : allElements)
{
result.Insert(element);
}
return result;
}
AccessingSet AccessingSet::Intersect(const AccessingSet& secondSet) const
{
vector<vector<ArrayDimension>> result;
if (secondSet.GetElements().empty() || this->allElements.empty())
return AccessingSet(result);
for (const auto& element : allElements)
{
if (secondSet.ContainsElement(element))
{
result.push_back(element);
}
else
{
vector<vector<ArrayDimension>> coveredBy;
secondSet.FindCoveredBy(element, coveredBy);
if (!coveredBy.empty())
{
result.insert(result.end(), coveredBy.begin(), coveredBy.end());
}
}
}
return AccessingSet(result);
}
AccessingSet AccessingSet::Diff(const AccessingSet& secondSet) const
{
if (secondSet.GetElements().empty() || allElements.empty())
return *this;
AccessingSet intersection = this->Intersect(secondSet);
AccessingSet uncovered = *this;
vector<vector<ArrayDimension>> result;
for (const auto& element : intersection.GetElements())
{
vector<vector<ArrayDimension>> current_uncovered;
uncovered.FindUncovered(element, current_uncovered);
uncovered = AccessingSet(current_uncovered);
}
return uncovered;
}
bool operator!=(const ArrayDimension& lhs, const ArrayDimension& rhs)
{
return !(lhs.start == rhs.start && lhs.step == rhs.step && lhs.tripCount == rhs.tripCount);
}
bool operator!=(const AccessingSet& lhs, const AccessingSet& rhs)
{
for (size_t i = 0; i < lhs.allElements.size(); i++)
{
for (size_t j = 0; j < lhs.allElements[i].size(); j++)
{
if (lhs.allElements[i][j] != rhs.allElements[i][j])
{
return true;
}
}
}
return false;
}
bool operator!=(const ArrayAccessingIndexes& lhs, const ArrayAccessingIndexes& rhs)
{
if (lhs.size() != rhs.size())
{
return true;
}
for (auto& [key, value] : lhs)
{
if (rhs.find(key) == rhs.end())
{
return true;
}
}
return false;
}

View File

@@ -0,0 +1,36 @@
#pragma once
#include<vector>
#include<map>
#include<unordered_set>
#include<string>
struct ArrayDimension
{
uint64_t start, step, tripCount;
};
class AccessingSet {
private:
std::vector<std::vector<ArrayDimension>> allElements;
public:
AccessingSet(std::vector<std::vector<ArrayDimension>> input) : allElements(input) {};
AccessingSet() {};
AccessingSet(const AccessingSet& a) { allElements = a.GetElements(); };
std::vector<std::vector<ArrayDimension>> GetElements() const;
void Insert(const std::vector<ArrayDimension>& element);
AccessingSet Union(const AccessingSet& source);
AccessingSet Intersect(const AccessingSet& secondSet) const;
AccessingSet Diff(const AccessingSet& secondSet) const;
bool ContainsElement(const std::vector<ArrayDimension>& element) const;
void FindCoveredBy(const std::vector<ArrayDimension>& element, std::vector<std::vector<ArrayDimension>>& result) const;
void FindUncovered(const std::vector<ArrayDimension>& element, std::vector<std::vector<ArrayDimension>>& result) const;
friend bool operator!=(const AccessingSet& lhs, const AccessingSet& rhs);
};
using ArrayAccessingIndexes = std::map<std::string, AccessingSet>;
bool operator!=(const ArrayDimension& lhs, const ArrayDimension& rhs);
bool operator!=(const AccessingSet& lhs, const AccessingSet& rhs);
bool operator!=(const ArrayAccessingIndexes& lhs, const ArrayAccessingIndexes& rhs);

View File

@@ -0,0 +1,268 @@
#include<vector>
#include<map>
#include<unordered_set>
#include<unordered_map>
#include<string>
#include <numeric>
#include "range_structures.h"
#include "region.h"
#include "../Utils/SgUtils.h"
using namespace std;
static bool isParentStmt(SgStatement* stmt, SgStatement* parent)
{
for (; stmt; stmt = stmt->controlParent())
if (stmt == parent)
{
return true;
}
return false;
}
/*returns head block and loop*/
pair<SAPFOR::BasicBlock*, unordered_set<SAPFOR::BasicBlock*>> GetBasicBlocksForLoop(const LoopGraph* loop, const vector<SAPFOR::BasicBlock*> blocks)
{
unordered_set<SAPFOR::BasicBlock*> block_loop;
SAPFOR::BasicBlock* head_block = nullptr;
auto loop_operator = loop->loop->GetOriginal();
for (const auto& block : blocks)
{
if (!block || (block->getInstructions().size() == 0))
{
continue;
}
SgStatement* first = block->getInstructions().front()->getInstruction()->getOperator();
SgStatement* last = block->getInstructions().back()->getInstruction()->getOperator();
if (isParentStmt(first, loop_operator) && isParentStmt(last, loop_operator))
{
block_loop.insert(block);
if ((!head_block) && (first == loop_operator) && (last == loop_operator) &&
(block->getInstructions().size() == 2) &&
(block->getInstructions().back()->getInstruction()->getOperation() == SAPFOR::CFG_OP::JUMP_IF))
{
head_block = block;
}
}
}
return { head_block, block_loop };
}
static void BuildLoopIndex(map<string, LoopGraph*>& loopForIndex, LoopGraph* loop) {
string index = loop->loopSymbol;
loopForIndex[index] = loop;
for (const auto& childLoop : loop->children) {
BuildLoopIndex(loopForIndex, childLoop);
}
}
static string FindIndexName(int pos, SAPFOR::BasicBlock* block, map<string, LoopGraph*>& loopForIndex) {
unordered_set<SAPFOR::Argument*> args = { block->getInstructions()[pos]->getInstruction()->getArg1() };
for (int i = pos - 1; i >= 0; i--) {
SAPFOR::Argument* res = block->getInstructions()[i]->getInstruction()->getResult();
if (res && args.find(res) != args.end()) {
SAPFOR::Argument* arg1 = block->getInstructions()[i]->getInstruction()->getArg1();
SAPFOR::Argument* arg2 = block->getInstructions()[i]->getInstruction()->getArg2();
if (arg1) {
string name = arg1->getValue();
int idx = name.find('%');
if (idx != -1 && loopForIndex.find(name.substr(idx + 1)) != loopForIndex.end())
return name.substr(idx + 1);
else {
args.insert(arg1);
}
}
if (arg2) {
string name = arg2->getValue();
int idx = name.find('%');
if (idx != -1 && loopForIndex.find(name.substr(idx + 1)) != loopForIndex.end())
return name.substr(idx + 1);
else {
args.insert(arg2);
}
}
}
}
return "";
}
static int GetDefUseArray(SAPFOR::BasicBlock* block, LoopGraph* loop, ArrayAccessingIndexes& def, ArrayAccessingIndexes& use) {
auto instructions = block->getInstructions();
map<string, LoopGraph*> loopForIndex;
BuildLoopIndex(loopForIndex, loop);
for (int i = 0; i < instructions.size(); i++)
{
auto instruction = instructions[i];
if (!instruction->getInstruction()->getArg1()) {
continue;
}
auto operation = instruction->getInstruction()->getOperation();
auto type = instruction->getInstruction()->getArg1()->getType();
if ((operation == SAPFOR::CFG_OP::STORE || operation == SAPFOR::CFG_OP::LOAD) && type == SAPFOR::CFG_ARG_TYPE::ARRAY)
{
vector<SAPFOR::Argument*> index_vars;
vector<int> refPos;
string array_name;
if (operation == SAPFOR::CFG_OP::STORE)
{
array_name = instruction->getInstruction()->getArg1()->getValue();
}
else
{
array_name = instruction->getInstruction()->getArg2()->getValue();
}
int j = i - 1;
while (j >= 0 && instructions[j]->getInstruction()->getOperation() == SAPFOR::CFG_OP::REF)
{
index_vars.push_back(instructions[j]->getInstruction()->getArg1());
refPos.push_back(j);
j--;
}
/*to choose correct dimension*/
int n = index_vars.size();
vector<ArrayDimension> accessPoint(n);
auto* ref = isSgArrayRefExp(instruction->getInstruction()->getExpression());
vector<pair<int, int>> coefsForDims;
for (int i = 0; ref && i < ref->numberOfSubscripts(); ++i)
{
const vector<int*>& coefs = getAttributes<SgExpression*, int*>(ref->subscript(i), set<int>{ INT_VAL });
if (coefs.size() == 1)
{
const pair<int, int> coef(coefs[0][0], coefs[0][1]);
coefsForDims.push_back(coef);
}
}
while (!index_vars.empty())
{
auto var = index_vars.back();
int currentVarPos = refPos.back();
pair currentCoefs = coefsForDims.back();
ArrayDimension current_dim;
if (var->getType() == SAPFOR::CFG_ARG_TYPE::CONST) {
current_dim = { stoul(var->getValue()), 1, 1 };
}
else
{
string name, full_name = var->getValue();
int pos = full_name.find('%');
LoopGraph* currentLoop;
if (pos != -1) {
name = full_name.substr(pos + 1);
if (loopForIndex.find(name) != loopForIndex.end()) {
currentLoop = loopForIndex[name];
}
else {
return -1;
}
}
else {
name = FindIndexName(currentVarPos, block, loopForIndex);
if (name == "") {
return -1;
}
if (loopForIndex.find(name) != loopForIndex.end()) {
currentLoop = loopForIndex[name];
}
else {
return -1;
}
}
uint64_t start = currentLoop->startVal * currentCoefs.first + currentCoefs.second;
uint64_t step = currentCoefs.first;
current_dim = { start, step, (uint64_t)currentLoop->calculatedCountOfIters };
}
accessPoint[n - index_vars.size()] = current_dim;
index_vars.pop_back();
refPos.pop_back();
coefsForDims.pop_back();
}
if (operation == SAPFOR::CFG_OP::STORE)
{
def[array_name].Insert(accessPoint);
}
else
{
use[array_name].Insert(accessPoint);
}
}
}
return 0;
}
static void SetConnections(unordered_map<SAPFOR::BasicBlock*, Region*>& bbToRegion, const unordered_set<SAPFOR::BasicBlock*>& blockSet)
{
for (SAPFOR::BasicBlock* block : blockSet)
{
for (SAPFOR::BasicBlock* nextBlock : block->getNext())
{
if (bbToRegion.find(nextBlock) != bbToRegion.end())
{
bbToRegion[block]->addNextRegion(bbToRegion[nextBlock]);
}
}
for (SAPFOR::BasicBlock* prevBlock : block->getPrev())
{
if (bbToRegion.find(prevBlock) != bbToRegion.end())
{
bbToRegion[block]->addPrevRegion(bbToRegion[prevBlock]);
}
}
}
}
static Region* CreateSubRegion(LoopGraph* loop, const vector<SAPFOR::BasicBlock*>& Blocks, const unordered_map<SAPFOR::BasicBlock*, Region*>& bbToRegion)
{
Region* region = new Region;
auto [header, blockSet] = GetBasicBlocksForLoop(loop, Blocks);
if (bbToRegion.find(header) != bbToRegion.end())
{
region->setHeader(bbToRegion.at(header));
}
else
{
return NULL;
}
for (SAPFOR::BasicBlock* block : blockSet)
{
if (bbToRegion.find(block) != bbToRegion.end())
{
region->addBasickBlocks(bbToRegion.at(block));
}
}
for (LoopGraph* childLoop : loop->children)
{
region->addSubRegions(CreateSubRegion(childLoop, Blocks, bbToRegion));
}
cout << header << endl;
return region;
}
Region::Region(LoopGraph* loop, const vector<SAPFOR::BasicBlock*>& Blocks)
{
auto [header, blockSet] = GetBasicBlocksForLoop(loop, Blocks);
unordered_map<SAPFOR::BasicBlock*, Region*> bbToRegion;
for (auto poiner : blockSet)
{
bbToRegion[poiner] = new Region(*poiner);
this->basickBlocks.insert(bbToRegion[poiner]);
GetDefUseArray(poiner, loop, bbToRegion[poiner]->array_def, bbToRegion[poiner]->array_use);
}
this->header = bbToRegion[header];
SetConnections(bbToRegion, blockSet);
//create subRegions
for (LoopGraph* childLoop : loop->children)
{
subRegions.insert(CreateSubRegion(childLoop, Blocks, bbToRegion));
}
}

View File

@@ -0,0 +1,60 @@
#pragma once
#include<vector>
#include<map>
#include<unordered_set>
#include<string>
#include "../GraphLoop/graph_loops.h"
#include "../CFGraph/CFGraph.h"
class Region : public SAPFOR::BasicBlock {
public:
Region() { header = nullptr; }
Region(SAPFOR::BasicBlock block) : SAPFOR::BasicBlock::BasicBlock(block) { header = nullptr; }
Region(LoopGraph* loop, const std::vector<SAPFOR::BasicBlock*>& Blocks);
Region* getHeader() { return header; }
void setHeader(Region* region) { header = region; }
std::unordered_set<Region*>& getBasickBlocks() { return basickBlocks; }
void addBasickBlocks(Region* region) { basickBlocks.insert(region); }
const std::unordered_set<Region*>& getPrevRegions() { return prevRegions; }
std::unordered_set<Region*> getNextRegions() { return nextRegions; }
void addPrevRegion(Region* region) { prevRegions.insert(region); }
void addNextRegion(Region* region) { nextRegions.insert(region); }
void replaceInPrevRegions(Region* source, Region* destination)
{
prevRegions.erase(destination);
prevRegions.insert(source);
}
void replaceInNextRegions(Region* source, Region* destination)
{
nextRegions.erase(destination);
nextRegions.insert(source);
}
std::unordered_set<Region*> getSubRegions() { return subRegions; }
void addSubRegions(Region* region) { subRegions.insert(region); }
ArrayAccessingIndexes array_def, array_use, array_out, array_in, array_priv;
private:
std::unordered_set<Region*> subRegions, basickBlocks;
/*next Region which is BB for current BB Region*/
std::unordered_set<Region*> nextRegions;
/*prev Regions which is BBs for current BB Region*/
std::unordered_set<Region*> prevRegions;
Region* header;
};

View File

@@ -316,7 +316,7 @@ void InitPassesDependencies(map<passes, vector<passes>> &passDepsIn, set<passes>
list({ VERIFY_INCLUDES, CORRECT_VAR_DECL }) <= Pass(SET_IMPLICIT_NONE);
list({ CALL_GRAPH2, CALL_GRAPH, BUILD_IR, LOOP_GRAPH }) <= Pass(FIND_PRIVATE_ARRAYS);
list({ CALL_GRAPH2, CALL_GRAPH, BUILD_IR, LOOP_GRAPH, LOOP_ANALYZER_DATA_DIST_S2 }) <= Pass(FIND_PRIVATE_ARRAYS);
passesIgnoreStateDone.insert({ CREATE_PARALLEL_DIRS, INSERT_PARALLEL_DIRS, INSERT_SHADOW_DIRS, EXTRACT_PARALLEL_DIRS,
EXTRACT_SHADOW_DIRS, CREATE_REMOTES, UNPARSE_FILE, REMOVE_AND_CALC_SHADOW,