3 Commits

5 changed files with 327 additions and 151 deletions

View File

@@ -17,42 +17,76 @@
#include "../Utils/utils.h" #include "../Utils/utils.h"
using std::map; using std::map;
using std::string;
using std::vector;
using std::pair; using std::pair;
using std::string;
using std::tuple; using std::tuple;
using std::vector;
// МОЖЕТ КАК-ТО ВЫЧИСЛЯТЬ ДИРЕКТИВЫ, А ПОТОМ ДЕЛАТЬ ПРОГОНЫ? map<size_t, size_t> createTemplateIdMapping(const vector<ParallelRegion*>& parallelRegions)
double runLibpredictCalc(SgProject &project,
const vector<size_t> &topology,
const string &clusterConfStr,
const vector<ParallelRegion*> &parallelRegions,
map<string, vector<LoopGraph*>> &loopGraph,
map<string, vector<Messages>> &SPF_messages)
{ {
libpredict::RetInit retInit = libpredict::Init(clusterConfStr, topology[0], topology[1], topology[2], topology[3]); size_t maxArrayId = 0;
for (int z = 0; z < parallelRegions.size(); ++z) {
const DataDirective& dataDirectives = parallelRegions[z]->GetDataDir();
if (retInit != libpredict::INIT_SUCCESS) { for (const auto& distrRule : dataDirectives.distrRules) {
__spf_print(1, "ERROR: Failed to initialize libpredict with cluster config: %s, return code: %d\n", clusterConfStr.c_str(), (int)retInit); if (distrRule.first && !distrRule.first->IsTemplate()) {
maxArrayId = std::max(maxArrayId, (size_t)distrRule.first->GetId());
std::wstring messageR, messageE; }
__spf_printToLongBuf(messageE, L"Failed to initialize libpredict library with cluster config: %s, return code: %d", }
to_wstring(clusterConfStr).c_str(), (int)retInit);
__spf_printToLongBuf(messageR, R206); for (const auto& alignRule : dataDirectives.alignRules) {
getObjectForFileFromMap(clusterConfStr.c_str(), SPF_messages).push_back(Messages(ERROR, 1, messageR, messageE, 1063)); if (alignRule.alignArray && !alignRule.alignArray->IsTemplate()) {
return -1; maxArrayId = std::max(maxArrayId, (size_t)alignRule.alignArray->GetId());
}
}
} }
// distribute и align из parallelRegions map<size_t, size_t> templateIdMapping;
size_t nextTemplateId = maxArrayId + 1;
for (int z = 0; z < parallelRegions.size(); ++z) { for (int z = 0; z < parallelRegions.size(); ++z) {
const DataDirective &dataDirectives = parallelRegions[z]->GetDataDir(); const DataDirective& dataDirectives = parallelRegions[z]->GetDataDir();
const vector<int> &currentVariant = parallelRegions[z]->GetCurrentVariant();
const DIST::Arrays<int> &allArrays = parallelRegions[z]->GetAllArrays();
auto &tmp = dataDirectives.distrRules; for (const auto& distrRule : dataDirectives.distrRules) {
if (distrRule.first && distrRule.first->IsTemplate()) {
size_t originalId = distrRule.first->GetId();
if (templateIdMapping.find(originalId) == templateIdMapping.end()) {
templateIdMapping[originalId] = nextTemplateId++;
}
}
}
for (const auto& alignRule : dataDirectives.alignRules) {
if (alignRule.alignWith && alignRule.alignWith->IsTemplate()) {
size_t originalId = alignRule.alignWith->GetId();
if (templateIdMapping.find(originalId) == templateIdMapping.end()) {
templateIdMapping[originalId] = nextTemplateId++;
}
}
}
}
return templateIdMapping;
}
PrecomputedLibpredictParams precomputeLibpredictParams(
SgProject& project,
const vector<ParallelRegion*>& parallelRegions,
const map<string, vector<LoopGraph*>>& loopGraph,
const map<size_t, size_t>& templateIdMapping)
{
PrecomputedLibpredictParams result;
// distribute and align from parallelRegions
for (int z = 0; z < parallelRegions.size(); ++z) {
const DataDirective& dataDirectives = parallelRegions[z]->GetDataDir();
const vector<int>& currentVariant = parallelRegions[z]->GetCurrentVariant();
const DIST::Arrays<int>& allArrays = parallelRegions[z]->GetAllArrays();
auto& tmp = dataDirectives.distrRules;
vector<pair<DIST::Array*, const DistrVariant*>> currentVar; vector<pair<DIST::Array*, const DistrVariant*>> currentVar;
for (int z1 = 0; z1 < currentVariant.size(); ++z1) for (int z1 = 0; z1 < currentVariant.size(); ++z1) {
currentVar.push_back(std::make_pair(tmp[z1].first, &tmp[z1].second[currentVariant[z1]])); currentVar.push_back(std::make_pair(tmp[z1].first, &tmp[z1].second[currentVariant[z1]]));
}
// distribute // distribute
for (const auto& distrRule : currentVar) { for (const auto& distrRule : currentVar) {
@@ -60,42 +94,40 @@ double runLibpredictCalc(SgProject &project,
const DistrVariant* variant = distrRule.second; const DistrVariant* variant = distrRule.second;
if (array && variant && !array->IsNotDistribute()) { if (array && variant && !array->IsNotDistribute()) {
size_t arrayId = array->GetId(); PrecomputedDistributeParams params;
size_t elemSize = array->GetTypeSize();
size_t originalId = array->GetId();
params.arrayId = originalId;
if (array->IsTemplate()) {
auto it = templateIdMapping.find(originalId);
if (it != templateIdMapping.end()) {
params.arrayId = it->second;
}
}
params.elemSize = array->GetTypeSize();
params.array = array;
vector<libpredict::DistributeAxisRule> axisDistributions;
const auto& arraySizes = array->GetSizes(); const auto& arraySizes = array->GetSizes();
for (int dim = 0; dim < array->GetDimSize(); ++dim) { for (int dim = 0; dim < array->GetDimSize(); ++dim) {
size_t dimSize = arraySizes[dim].second - arraySizes[dim].first + 1; size_t dimSize = arraySizes[dim].second - arraySizes[dim].first + 1;
if (dim < variant->distRule.size() && variant->distRule[dim] == dist::BLOCK) { if (dim < variant->distRule.size() && variant->distRule[dim] == dist::BLOCK) {
axisDistributions.emplace_back(dimSize, libpredict::TypeDistribute::BLOCK); params.axisDistributions.emplace_back(dimSize, libpredict::TypeDistribute::BLOCK);
} else { } else {
axisDistributions.emplace_back(dimSize, libpredict::TypeDistribute::NONE); params.axisDistributions.emplace_back(dimSize, libpredict::TypeDistribute::NONE);
} }
} }
vector<pair<size_t, size_t>> shadowEdges;
const auto& shadowSpec = array->GetShadowSpec(); const auto& shadowSpec = array->GetShadowSpec();
for (int dim = 0; dim < shadowSpec.size() && dim < array->GetDimSize(); ++dim) { for (int dim = 0; dim < shadowSpec.size() && dim < array->GetDimSize(); ++dim) {
if (dim < variant->distRule.size() && variant->distRule[dim] == dist::BLOCK) { if (dim < variant->distRule.size() && variant->distRule[dim] == dist::BLOCK) {
shadowEdges.emplace_back(shadowSpec[dim].first, shadowSpec[dim].second); params.shadowEdges.emplace_back(shadowSpec[dim].first, shadowSpec[dim].second);
} }
} }
libpredict::RetDistribute retDistribute = libpredict::Distribute(arrayId, elemSize, axisDistributions, shadowEdges); result.distributeParams.push_back(params);
if (retDistribute != libpredict::DISTRIBUTE_SUCCESS) {
__spf_print(1, "ERROR: Failed to distribute array '%s' (id=%zu) with libpredict, return code: %d\n",
array->GetShortName().c_str(), arrayId, (int)retDistribute);
std::wstring messageR, messageE;
__spf_printToLongBuf(messageE, L"Failed to distribute array '%s' with libpredict, return code: %d",
to_wstring(array->GetShortName()).c_str(), (int)retDistribute);
__spf_printToLongBuf(messageR, R207);
getObjectForFileFromMap(array->GetDeclInfo().begin()->first.c_str(), SPF_messages).push_back(
Messages(ERROR, array->GetDeclInfo().begin()->second, messageR, messageE, 1064));
}
} }
} }
@@ -105,16 +137,29 @@ double runLibpredictCalc(SgProject &project,
DIST::Array* alignWithArray = alignRule.alignWith; DIST::Array* alignWithArray = alignRule.alignWith;
if (alignArray && alignWithArray && !alignArray->IsNotDistribute()) { if (alignArray && alignWithArray && !alignArray->IsNotDistribute()) {
size_t arrayId = alignArray->GetId(); PrecomputedAlignParams params;
size_t distributedArrayId = alignWithArray->GetId();
size_t elemSize = alignArray->GetTypeSize(); params.arrayId = alignArray->GetId();
size_t originalDistributedArrayId = alignWithArray->GetId();
params.distributedArrayId = originalDistributedArrayId;
if (alignWithArray->IsTemplate()) {
auto it = templateIdMapping.find(originalDistributedArrayId);
if (it != templateIdMapping.end()) {
params.distributedArrayId = it->second;
}
}
params.elemSize = alignArray->GetTypeSize();
params.alignArray = alignArray;
params.alignWithArray = alignWithArray;
const auto& arraySizes = alignArray->GetSizes(); const auto& arraySizes = alignArray->GetSizes();
vector<size_t> dimensions; for (int dim = 0; dim < alignArray->GetDimSize(); ++dim) {
for (int dim = 0; dim < alignArray->GetDimSize(); ++dim) size_t dimSize = arraySizes[dim].second - arraySizes[dim].first + 1;
dimensions.push_back(arraySizes[dim].second - arraySizes[dim].first + 1); params.dimensions.push_back(dimSize);
}
vector<libpredict::AlignDisplay> distributionExpressions;
for (int dim = 0; dim < alignWithArray->GetDimSize(); ++dim) { for (int dim = 0; dim < alignWithArray->GetDimSize(); ++dim) {
bool found = false; bool found = false;
for (int i = 0; i < alignRule.alignRuleWith.size(); ++i) { for (int i = 0; i < alignRule.alignRuleWith.size(); ++i) {
@@ -122,51 +167,39 @@ double runLibpredictCalc(SgProject &project,
if (ruleWith.first == dim) { if (ruleWith.first == dim) {
const auto& rule = ruleWith.second; const auto& rule = ruleWith.second;
if (rule.first == 0) { if (rule.first == 0) {
// Константа // constant
distributionExpressions.emplace_back(rule.second); params.distributionExpressions.emplace_back(rule.second);
} else { } else {
// Линейное выражение a * I + b // linear expression a * I + b
distributionExpressions.emplace_back(i, rule.first, rule.second); params.distributionExpressions.emplace_back(i, rule.first, rule.second);
} }
found = true; found = true;
break; break;
} }
} }
if (!found) { if (!found) {
// Нет правила для этого измерения // There is no rule for this measurement
distributionExpressions.emplace_back(); params.distributionExpressions.emplace_back();
} }
} }
vector<pair<size_t, size_t>> shadowEdges;
const auto& shadowSpec = alignArray->GetShadowSpec(); const auto& shadowSpec = alignArray->GetShadowSpec();
for (int dim = 0; dim < shadowSpec.size() && dim < alignArray->GetDimSize(); ++dim) { for (int dim = 0; dim < shadowSpec.size() && dim < alignArray->GetDimSize(); ++dim) {
shadowEdges.emplace_back(shadowSpec[dim].first, shadowSpec[dim].second); params.shadowEdges.emplace_back(shadowSpec[dim].first, shadowSpec[dim].second);
} }
libpredict::RetAlign retAlign = libpredict::Align(arrayId, distributedArrayId, elemSize, dimensions, distributionExpressions, shadowEdges); result.alignParams.push_back(params);
if (retAlign != libpredict::ALIGN_SUCCESS) {
__spf_print(1, "ERROR: Failed to align array '%s' (id=%zu) with array '%s' (id=%zu), return code: %d\n",
alignArray->GetShortName().c_str(), arrayId,
alignWithArray->GetShortName().c_str(), distributedArrayId, (int)retAlign);
std::wstring messageR, messageE;
__spf_printToLongBuf(messageE, L"Failed to align array '%s' with array '%s' using libpredict, return code: %d",
to_wstring(alignArray->GetShortName()).c_str(),
to_wstring(alignWithArray->GetShortName()).c_str(), (int)retAlign);
__spf_printToLongBuf(messageR, R208);
getObjectForFileFromMap(alignArray->GetDeclInfo().begin()->first.c_str(), SPF_messages).push_back(
Messages(ERROR, alignArray->GetDeclInfo().begin()->second, messageR, messageE, 1065));
}
} }
} }
// shadow_renew // shadow_renew
map<LoopGraph*, ParallelDirective*> parallelDirs; map<LoopGraph*, ParallelDirective*> parallelDirs;
for (int i = project.numberOfFiles() - 1; i >= 0; --i) { for (int i = project.numberOfFiles() - 1; i >= 0; --i) {
SgFile *file = &(project.file(i)); SgFile* file = &(project.file(i));
auto fountInfo = findAllDirectives(file, getObjectForFileFromMap(file->filename(), loopGraph), parallelRegions[z]->GetId()); auto fountInfo = findAllDirectives(
file,
getObjectForFileFromMap(file->filename(), const_cast<map<string, vector<LoopGraph*>>&>(loopGraph)),
parallelRegions[z]->GetId());
parallelDirs.insert(fountInfo.begin(), fountInfo.end()); parallelDirs.insert(fountInfo.begin(), fountInfo.end());
} }
@@ -181,66 +214,135 @@ double runLibpredictCalc(SgProject &project,
const vector<pair<int, int>>& bounds = shadowRenewItem.second; const vector<pair<int, int>>& bounds = shadowRenewItem.second;
DIST::Array* shadowArray = allArrays.GetArrayByName(arrayName); DIST::Array* shadowArray = allArrays.GetArrayByName(arrayName);
if (shadowArray == NULL) if (shadowArray == NULL) {
continue; continue;
}
if (shadowArray && !shadowArray->IsNotDistribute()) { if (shadowArray && !shadowArray->IsNotDistribute()) {
size_t arrayId = shadowArray->GetId(); PrecomputedShadowRenewParams params;
params.arrayId = shadowArray->GetId();
params.shadowArray = shadowArray;
vector<pair<size_t, size_t>> shadow_renew;
for (const auto& bound : bounds) { for (const auto& bound : bounds) {
shadow_renew.emplace_back(static_cast<size_t>(bound.first), params.shadow_renew.emplace_back(static_cast<size_t>(bound.first),
static_cast<size_t>(bound.second)); static_cast<size_t>(bound.second));
} }
bool corner = directive->shadowRenewCorner[shadowIdx]; params.corner = directive->shadowRenewCorner[shadowIdx];
params.number_loop_iterations = loopPtr ? static_cast<size_t>(loopPtr->countOfIters) : 1;
size_t number_loop_iterations = loopPtr ? static_cast<size_t>(loopPtr->countOfIters) : 1; result.shadowRenewParams.push_back(params);
libpredict::RetShadowRenew retShadowRenew = libpredict::ShadowRenew(arrayId, shadow_renew, corner, number_loop_iterations);
if (retShadowRenew != libpredict::SHADOW_RENEW_SUCCESS) {
__spf_print(1, "ERROR: Failed to process shadow_renew for array '%s' (id=%zu), return code: %d\n",
shadowArray->GetShortName().c_str(), arrayId, (int)retShadowRenew);
std::wstring messageR, messageE;
__spf_printToLongBuf(messageE, L"Failed to process shadow_renew for array '%s' with libpredict, return code: %d",
to_wstring(shadowArray->GetShortName()).c_str(), (int)retShadowRenew);
__spf_printToLongBuf(messageR, R209);
getObjectForFileFromMap(shadowArray->GetDeclInfo().begin()->first.c_str(), SPF_messages).push_back(
Messages(ERROR, shadowArray->GetDeclInfo().begin()->second, messageR, messageE, 1066));
}
} }
} }
} }
} }
} }
return result;
}
double runLibpredictCalc(const vector<size_t>& topology,
const string& clusterConfStr,
const PrecomputedLibpredictParams& precomputedParams,
map<string, vector<Messages>>& SPF_messages)
{
libpredict::RetInitGrid retInitGrid = libpredict::InitGrid(topology[0], topology[1], topology[2], topology[3]);
if (retInitGrid != libpredict::INIT_GRID_SUCCESS) {
__spf_print(1, "ERROR: Failed to initialize libpredict grid with topology: %zu %zu %zu %zu, return code: %d\n",
topology[0], topology[1], topology[2], topology[3], (int)retInitGrid);
std::wstring messageR, messageE;
__spf_printToLongBuf(messageE, L"Failed to initialize libpredict grid with topology: %zu %zu %zu %zu, return code: %d",
topology[0], topology[1], topology[2], topology[3], (int)retInitGrid);
__spf_printToLongBuf(messageR, R207);
getObjectForFileFromMap(clusterConfStr.c_str(), SPF_messages).push_back(Messages(ERROR, 1, messageR, messageE, 1064));
return -1;
}
// distribute
for (const auto& params : precomputedParams.distributeParams) {
libpredict::RetDistribute retDistribute = libpredict::Distribute(
params.arrayId, params.elemSize, params.axisDistributions, params.shadowEdges);
if (retDistribute != libpredict::DISTRIBUTE_SUCCESS) {
__spf_print(1, "ERROR: Failed to distribute array '%s' (id=%zu) with libpredict, return code: %d\n",
params.array->GetShortName().c_str(), params.arrayId, (int)retDistribute);
std::wstring messageR, messageE;
__spf_printToLongBuf(messageE, L"Failed to distribute array '%s' with libpredict, return code: %d",
to_wstring(params.array->GetShortName()).c_str(), (int)retDistribute);
__spf_printToLongBuf(messageR, R208);
getObjectForFileFromMap(params.array->GetDeclInfo().begin()->first.c_str(), SPF_messages).push_back(Messages(ERROR, params.array->GetDeclInfo().begin()->second, messageR, messageE, 1065));
}
}
// align
for (const auto& params : precomputedParams.alignParams) {
libpredict::RetAlign retAlign = libpredict::Align(
params.arrayId, params.distributedArrayId, params.elemSize,
params.dimensions, params.distributionExpressions, params.shadowEdges);
if (retAlign != libpredict::ALIGN_SUCCESS) {
__spf_print(1, "ERROR: Failed to align array '%s' (id=%zu) with array '%s' (id=%zu), return code: %d\n",
params.alignArray->GetShortName().c_str(), params.arrayId,
params.alignWithArray->GetShortName().c_str(), params.distributedArrayId, (int)retAlign);
std::wstring messageR, messageE;
__spf_printToLongBuf(messageE, L"Failed to align array '%s' with array '%s' using libpredict, return code: %d",
to_wstring(params.alignArray->GetShortName()).c_str(),
to_wstring(params.alignWithArray->GetShortName()).c_str(), (int)retAlign);
__spf_printToLongBuf(messageR, R209);
getObjectForFileFromMap(params.alignArray->GetDeclInfo().begin()->first.c_str(), SPF_messages).push_back(Messages(ERROR, params.alignArray->GetDeclInfo().begin()->second, messageR, messageE, 1066));
}
}
// shadow_renew
for (const auto& params : precomputedParams.shadowRenewParams) {
libpredict::RetShadowRenew retShadowRenew = libpredict::ShadowRenew(
params.arrayId, params.shadow_renew, params.corner, params.number_loop_iterations);
if (retShadowRenew != libpredict::SHADOW_RENEW_SUCCESS) {
__spf_print(1, "ERROR: Failed to process shadow_renew for array '%s' (id=%zu), return code: %d\n",
params.shadowArray->GetShortName().c_str(), params.arrayId, (int)retShadowRenew);
std::wstring messageR, messageE;
__spf_printToLongBuf(messageE, L"Failed to process shadow_renew for array '%s' with libpredict, return code: %d",
to_wstring(params.shadowArray->GetShortName()).c_str(), (int)retShadowRenew);
__spf_printToLongBuf(messageR, R210);
getObjectForFileFromMap(params.shadowArray->GetDeclInfo().begin()->first.c_str(), SPF_messages).push_back(Messages(ERROR, params.shadowArray->GetDeclInfo().begin()->second, messageR, messageE, 1067));
}
}
return libpredict::GetTime(); return libpredict::GetTime();
} }
void runPredictScheme(SgProject &project, void runPredictScheme(SgProject& project,
vector<vector<size_t>> &topologies, vector<vector<size_t>>& topologies,
const vector<ParallelRegion*> &parallelRegions, const vector<ParallelRegion*>& parallelRegions,
map<string, vector<LoopGraph*>> &loopGraph, map<string, vector<LoopGraph*>>& loopGraph,
map<string, vector<Messages>> &SPF_messages) map<string, vector<Messages>>& SPF_messages)
{ {
// calculating maximum dimension of distribution // calculating maximum dimension of distribution
int maxSizeDist = 0; int maxSizeDist = 0;
for (int z = 0; z < parallelRegions.size(); ++z) { for (int z = 0; z < parallelRegions.size(); ++z) {
const DataDirective &dataDirectives = parallelRegions[z]->GetDataDir(); const DataDirective& dataDirectives = parallelRegions[z]->GetDataDir();
const vector<int> &currentVariant = parallelRegions[z]->GetCurrentVariant(); const vector<int>& currentVariant = parallelRegions[z]->GetCurrentVariant();
auto &tmp = dataDirectives.distrRules; auto& tmp = dataDirectives.distrRules;
vector<const DistrVariant*> currentVar; vector<const DistrVariant*> currentVar;
for (int z1 = 0; z1 < currentVariant.size(); ++z1) for (int z1 = 0; z1 < currentVariant.size(); ++z1) {
currentVar.push_back(&tmp[z1].second[currentVariant[z1]]); currentVar.push_back(&tmp[z1].second[currentVariant[z1]]);
}
for (auto var : currentVar) { for (auto var : currentVar) {
int countBlock = 0; int countBlock = 0;
for (int z = 0; z < var->distRule.size(); ++z) for (int z = 0; z < var->distRule.size(); ++z) {
if (var->distRule[z] == dist::BLOCK) if (var->distRule[z] == dist::BLOCK) {
++countBlock; ++countBlock;
}
}
maxSizeDist = std::max(maxSizeDist, countBlock); maxSizeDist = std::max(maxSizeDist, countBlock);
} }
} }
@@ -254,22 +356,51 @@ void runPredictScheme(SgProject &project,
clusterConfStr = firstFilePath.substr(0, lastSlash + 1) + "cluster.conf"; clusterConfStr = firstFilePath.substr(0, lastSlash + 1) + "cluster.conf";
} }
// creating template ID display to avoid conflicts
map<size_t, size_t> templateIdMapping = createTemplateIdMapping(parallelRegions);
// Precomputing parameters of directive functions from libpredict
PrecomputedLibpredictParams precomputedParams = precomputeLibpredictParams(
project, parallelRegions, loopGraph, templateIdMapping);
// iterating through topologies to find most optimal one // iterating through topologies to find most optimal one
topologies = vector<vector<size_t>>(); topologies = vector<vector<size_t>>();
if (maxSizeDist) { if (maxSizeDist) {
if (maxSizeDist > 4) {
maxSizeDist = 4;
}
if (maxSizeDist > 4) maxSizeDist = 4; // Initialize cluster
int procCount = 0;
libpredict::RetInitCluster retInitCluster = libpredict::InitCluster(clusterConfStr, procCount);
// TODO: look at cluster configuration if (retInitCluster != libpredict::INIT_CLUSTER_SUCCESS) {
size_t n1max = 10; __spf_print(1, "ERROR: Failed to initialize libpredict cluster with config: %s, return code: %d\n", clusterConfStr.c_str(), (int)retInitCluster);
size_t n2max = (maxSizeDist >= 2) ? 10 : 1;
size_t n3max = (maxSizeDist >= 3) ? 10 : 1; std::wstring messageR, messageE;
size_t n4max = (maxSizeDist >= 4) ? 10 : 1; __spf_printToLongBuf(messageE, L"Failed to initialize libpredict cluster with config: %s, return code: %d",
to_wstring(clusterConfStr).c_str(), (int)retInitCluster);
__spf_printToLongBuf(messageR, R206);
getObjectForFileFromMap(clusterConfStr.c_str(), SPF_messages).push_back(Messages(ERROR, 1, messageR, messageE, 1063));
return;
}
for (size_t n1 = 2; n1 <= procCount; ++n1) {
for (size_t n2 = 1; n2 <= n1 && n1 * n2 <= procCount; ++n2) {
if (n2 != 1 && maxSizeDist < 2 || n2 == 1 && maxSizeDist == 2) {
continue;
}
for (size_t n3 = 1; n3 <= n2 && n1 * n2 * n3 <= procCount; ++n3) {
if (n3 != 1 && maxSizeDist < 3 || n3 == 1 && maxSizeDist == 3) {
continue;
}
for (size_t n4 = 1; n4 <= n3 && n1 * n2 * n3 * n4 <= procCount; ++n4) {
if (n4 != 1 && maxSizeDist < 4 || n4 == 1 && maxSizeDist == 4) {
continue;
}
for (size_t n1 = 1; n1 <= n1max; ++n1) {
for (size_t n2 = 1; n2 <= n2max; ++n2) {
for (size_t n3 = 1; n3 <= n3max; ++n3) {
for (size_t n4 = 1; n4 <= n4max; ++n4) {
topologies.push_back(vector<size_t>{n1, n2, n3, n4}); topologies.push_back(vector<size_t>{n1, n2, n3, n4});
} }
} }
@@ -278,26 +409,28 @@ void runPredictScheme(SgProject &project,
vector<size_t> best; vector<size_t> best;
double bestTime = std::numeric_limits<double>::max(); double bestTime = std::numeric_limits<double>::max();
for (auto &topology : topologies) { for (auto& topology : topologies) {
// if (DEBUG) { double currTime = runLibpredictCalc(topology, clusterConfStr, precomputedParams, SPF_messages);
// string outStr = "";
// for (const auto &elem : top)
// outStr += std::to_string(elem) + " ";
// __spf_print(1, "topology %s has time %f\n", outStr.c_str(), currTime);
// }
double currTime = runLibpredictCalc(project, topology, clusterConfStr, parallelRegions, loopGraph, SPF_messages);
if (currTime == -1) string outStr = "";
for (const auto& elem : topology) {
outStr += std::to_string(elem) + " ";
}
__spf_print(1, "topology %s has time %f\n", outStr.c_str(), currTime);
if (currTime == -1) {
return; return;
}
if (currTime < bestTime) { if (currTime < bestTime) {
bestTime = currTime; bestTime = currTime;
best = topology; best = topology;
} }
} }
string outStr; string outStr;
for (const auto &elem : best) for (const auto& elem : best) {
outStr += std::to_string(elem) + " "; outStr += std::to_string(elem) + " ";
}
__spf_print(1, "best topology %s with time %f\n", outStr.c_str(), bestTime); __spf_print(1, "best topology %s with time %f\n", outStr.c_str(), bestTime);
} else { } else {

View File

@@ -4,16 +4,54 @@
#include <string> #include <string>
#include "dvm.h" #include "dvm.h"
#include "graph_calls.h" #include "graph_calls.h"
#include "../../projects/libpredictor/include/libpredict/predictor.h"
void runPredictScheme(SgProject &project, struct PrecomputedDistributeParams {
std::vector<std::vector<size_t>> &topologies, size_t arrayId;
const std::vector<ParallelRegion*> &parallelRegions, size_t elemSize;
std::map<std::string, std::vector<LoopGraph*>> &loopGraph, std::vector<libpredict::DistributeAxisRule> axisDistributions;
std::map<std::string, std::vector<Messages>> &SPF_messages); std::vector<std::pair<size_t, size_t>> shadowEdges;
DIST::Array* array;
};
double runLibpredictCalc(SgProject &project, struct PrecomputedAlignParams {
const std::vector<size_t> &topology, size_t arrayId;
const std::string &clusterConfStr, size_t distributedArrayId;
const std::vector<ParallelRegion*> &parallelRegions, size_t elemSize;
std::map<std::string, std::vector<LoopGraph*>> &loopGraph, std::vector<size_t> dimensions;
std::map<std::string, std::vector<Messages>> &SPF_messages); std::vector<libpredict::AlignDisplay> distributionExpressions;
std::vector<std::pair<size_t, size_t>> shadowEdges;
DIST::Array* alignArray;
DIST::Array* alignWithArray;
};
struct PrecomputedShadowRenewParams {
size_t arrayId;
std::vector<std::pair<size_t, size_t>> shadow_renew;
bool corner;
size_t number_loop_iterations;
DIST::Array* shadowArray;
};
struct PrecomputedLibpredictParams {
std::vector<PrecomputedDistributeParams> distributeParams;
std::vector<PrecomputedAlignParams> alignParams;
std::vector<PrecomputedShadowRenewParams> shadowRenewParams;
};
PrecomputedLibpredictParams precomputeLibpredictParams(
SgProject& project,
const std::vector<ParallelRegion*>& parallelRegions,
const std::map<std::string, std::vector<LoopGraph*>>& loopGraph,
const std::map<size_t, size_t>& templateIdMapping);
void runPredictScheme(SgProject& project,
std::vector<std::vector<size_t>>& topologies,
const std::vector<ParallelRegion*>& parallelRegions,
std::map<std::string, std::vector<LoopGraph*>>& loopGraph,
std::map<std::string, std::vector<Messages>>& SPF_messages);
double runLibpredictCalc(const std::vector<size_t>& topology,
const std::string& clusterConfStr,
const PrecomputedLibpredictParams& precomputedParams,
std::map<std::string, std::vector<Messages>>& SPF_messages);

View File

@@ -78,11 +78,12 @@ enum typeMessage { WARR, ERROR, NOTE };
// 60 "Format misplaced" // 60 "Format misplaced"
// 61 "Array has declaration area conflict" // 61 "Array has declaration area conflict"
// 62 "need to move common declaration to main for DECLATE" // 62 "need to move common declaration to main for DECLATE"
// 63 "Failed to initialize libpredict library" // 63 "Failed to initialize libpredict cluster"
// 64 "Failed to distribute array with libpredict" // 64 "Failed to initialize libpredict grid"
// 65 "Failed to align array with libpredict" // 65 "Failed to distribute array with libpredict"
// 66 "Failed to process shadow_renew with libpredict" // 66 "Failed to align array with libpredict"
// // 67 "Failed to process shadow_renew with libpredict"
//
// 20xx TRANSFORM GROUP // 20xx TRANSFORM GROUP
// 01 "can not convert array assign to loop" // 01 "can not convert array assign to loop"
// 02 "converted arithmetic IF to simple IF" // 02 "converted arithmetic IF to simple IF"
@@ -309,7 +310,7 @@ static void printStackTrace() { };
} \ } \
} while (0) } while (0)
// Свободный - R209 // Свободный - R210
// Гайд по русификации сообщений: При добавлении нового сообщения, меняется последний сводобный идентификатор. // Гайд по русификации сообщений: При добавлении нового сообщения, меняется последний сводобный идентификатор.
// В этом файле остаются только спецификаторы, для которых будет заполнен текст. Полный текст пишется в файле // В этом файле остаются только спецификаторы, для которых будет заполнен текст. Полный текст пишется в файле
// russian_errors_text.txt. Спецификаторы там тоже сохраняются, по ним в визуализаторе будет восстановлен // russian_errors_text.txt. Спецификаторы там тоже сохраняются, по ним в визуализаторе будет восстановлен
@@ -516,6 +517,8 @@ static const wchar_t* R207 = L"R207:";
static const wchar_t* R208 = L"R208:"; static const wchar_t* R208 = L"R208:";
//1066 //1066
static const wchar_t* R209 = L"R209:"; static const wchar_t* R209 = L"R209:";
//1067
static const wchar_t* R210 = L"R210:";
//2001 //2001
static const wchar_t *R94 = L"R94:"; static const wchar_t *R94 = L"R94:";

View File

@@ -189,11 +189,13 @@ R205 = "Массив '%s' состоящий в common блоке '%s' долж
//1063 //1063
R206 = "Ошибка инициализации библиотеки libpredict с конфигурацией кластера: %s, код возврата: %d" R206 = "Ошибка инициализации библиотеки libpredict с конфигурацией кластера: %s, код возврата: %d"
//1064 //1064
R207 = "Ошибка распределения массива '%s' с помощью libpredict, код возврата: %d" R207 = "Ошибка инициализации сетки libpredict с топологией: %zu %zu %zu %zu, код возврата: %d"
//1065 //1065
R208 = "Ошибка выравнивания массива '%s' с массивом '%s' с помощью libpredict, код возврата: %d" R208 = "Ошибка распределения массива '%s' с помощью libpredict, код возврата: %d"
//1066 //1066
R209 = "Ошибка обработки shadow_renew для массива '%s' с помощью libpredict, код возврата: %d" R209 = "Ошибка выравнивания массива '%s' с массивом '%s' с помощью libpredict, код возврата: %d"
//1067
R210 = "Ошибка обработки shadow_renew для массива '%s' с помощью libpredict, код возврата: %d"
//2001 //2001
R94 = "Невозможно автоматически преобразовать данное присваивание к циклу" R94 = "Невозможно автоматически преобразовать данное присваивание к циклу"