Files
SAPFOR/src/PrivateAnalyzer/range_structures.cpp
2025-06-02 08:23:40 +03:00

294 lines
9.4 KiB
C++

#include <vector>
#include <map>
#include <unordered_set>
#include <string>
#include <numeric>
#include "range_structures.h"
using namespace std;
static vector<uint64_t> FindParticularSolution(const ArrayDimension& dim1, const ArrayDimension& dim2)
{
for (uint64_t i = 0; i < dim1.tripCount; i++)
{
uint64_t leftPart = dim1.start + i * dim1.step;
for (uint64_t j = 0; j < dim2.tripCount; j++)
{
uint64_t rightPart = dim2.start + j * dim2.step;
if (leftPart == rightPart)
return { i, j };
}
}
return {};
}
/* dim1 /\ dim2 */
static ArrayDimension* DimensionIntersection(const ArrayDimension& dim1, const ArrayDimension& dim2)
{
vector<uint64_t> partSolution = FindParticularSolution(dim1, dim2);
if (partSolution.empty())
return NULL;
int64_t x0 = partSolution[0], y0 = partSolution[1];
/* x = x_0 + c * t */
/* y = y_0 + d * t */
int64_t c = dim2.step / gcd(dim1.step, dim2.step);
int64_t d = dim1.step / gcd(dim1.step, dim2.step);
int64_t tXMin, tXMax, tYMin, tYMax;
tXMin = -x0 / c;
tXMax = (dim1.tripCount - 1 - x0) / c;
tYMin = -y0 / d;
tYMax = (dim2.tripCount - 1 - y0) / d;
int64_t tMin = max(tXMin, tYMin);
uint64_t tMax = min(tXMax, tYMax);
if (tMin > tMax)
return NULL;
uint64_t start3 = dim1.start + x0 * dim1.step;
uint64_t step3 = c * dim1.step;
ArrayDimension* result = new(ArrayDimension){ start3, step3, tMax + 1 };
return result;
}
/* dim1 / dim2 */
static vector<ArrayDimension> DimensionDifference(const ArrayDimension& dim1, const ArrayDimension& dim2)
{
ArrayDimension* intersection = DimensionIntersection(dim1, dim2);
if (!intersection)
return { dim1 };
vector<ArrayDimension> result;
/* add the part before intersection */
if (dim1.start < intersection->start)
result.push_back({ dim1.start, dim1.step, (intersection->start - dim1.start) / dim1.step });
/* add the parts between intersection steps */
uint64_t start = (intersection->start - dim1.start) / dim1.step;
uint64_t interValue = intersection->start;
for (int64_t i = start; dim1.start + i * dim1.step <= intersection->start + intersection->step * (intersection->tripCount - 1); i++)
{
uint64_t centerValue = dim1.start + i * dim1.step;
if (centerValue == interValue)
{
if (i - start > 1)
{
result.push_back({ dim1.start + (start + 1) * dim1.step, dim1.step, i - start - 1 });
start = i;
}
interValue += intersection->step;
}
}
/* add the part after intersection */
if (intersection->start + intersection->step * (intersection->tripCount - 1) < dim1.start + dim1.step * (dim1.tripCount - 1))
{
/* first value after intersection */
uint64_t right_start = intersection->start + intersection->step * (intersection->tripCount - 1) + dim1.step;
uint64_t tripCount = (dim1.start + dim1.step * dim1.tripCount - right_start) / dim1.step;
result.push_back({ right_start, dim1.step, tripCount });
}
delete(intersection);
return result;
}
static vector<ArrayDimension> DimensionUnion(const ArrayDimension& dim1, const ArrayDimension& dim2)
{
vector<ArrayDimension> res;
ArrayDimension* inter = DimensionIntersection(dim1, dim2);
if (!inter)
return { dim1, dim2 };
res.push_back(*inter);
delete(inter);
vector<ArrayDimension> diff1, diff2;
diff1 = DimensionDifference(dim1, dim2);
diff2 = DimensionDifference(dim2, dim1);
res.insert(res.end(), diff1.begin(), diff1.end());
res.insert(res.end(), diff2.begin(), diff2.end());
return res;
}
static vector<ArrayDimension> ElementsIntersection(const vector<ArrayDimension>& firstElement, const vector<ArrayDimension>& secondElement)
{
if (firstElement.empty() || secondElement.empty())
return {};
size_t dimAmount = firstElement.size();
/* check if there is no intersecction */
for (size_t i = 0; i < dimAmount; i++)
if (FindParticularSolution(firstElement[i], secondElement[i]).empty())
return {};
vector<ArrayDimension> result(dimAmount);
for (size_t i = 0; i < dimAmount; i++)
{
ArrayDimension* resPtr = DimensionIntersection(firstElement[i], secondElement[i]);
if (resPtr)
result[i] = *resPtr;
else
return {};
}
return result;
}
static vector<vector<ArrayDimension>> ElementsDifference(const vector<ArrayDimension>& firstElement,
const vector<ArrayDimension>& secondElement)
{
if (firstElement.empty() || secondElement.empty())
return {};
vector<ArrayDimension> intersection = ElementsIntersection(firstElement, secondElement);
vector<vector<ArrayDimension>> result;
if (intersection.empty())
return { firstElement };
for (int i = 0; i < firstElement.size(); i++)
{
auto dimDiff = DimensionDifference(firstElement[i], secondElement[i]);
if (!dimDiff.empty())
{
vector<ArrayDimension> firstCopy = firstElement;
for (const auto& range : dimDiff)
{
firstCopy[i] = range;
result.push_back(firstCopy);
}
}
}
return result;
}
static void ElementsUnion(const vector<ArrayDimension>& firstElement, const vector<ArrayDimension>& secondElement,
vector<vector<ArrayDimension>>& lc, vector<vector<ArrayDimension>>& rc,
vector<ArrayDimension>& intersection)
{
/* lc(rc) is a set of ranges, which only exist in first(second) element*/
intersection = ElementsIntersection(firstElement, secondElement);
lc = ElementsDifference(firstElement, intersection);
rc = ElementsDifference(secondElement, intersection);
}
void AccessingSet::FindUncovered(const vector<ArrayDimension>& element, vector<vector<ArrayDimension>>& result) const {
vector<vector<ArrayDimension>> newTails;
result.push_back(element);
for (const auto& currentElement : allElements)
{
for (const auto& tailLoc : result)
{
auto intersection = ElementsIntersection(tailLoc, currentElement);
auto diff = ElementsDifference(tailLoc, intersection);
if (!diff.empty()) {
newTails.insert(newTails.end(), diff.begin(), diff.end());
}
}
result = newTails;
newTails.clear();
}
}
bool AccessingSet::ContainsElement(const vector<ArrayDimension>& element) const
{
vector<vector<ArrayDimension>> tails;
FindUncovered(element, tails);
return !tails.empty();
}
void AccessingSet::FindCoveredBy(const vector<ArrayDimension>& element, vector<vector<ArrayDimension>>& result) const
{
for (const auto& currentElement : allElements)
{
auto intersection = ElementsIntersection(element, currentElement);
if (!intersection.empty())
result.push_back(intersection);
}
}
vector<vector<ArrayDimension>> AccessingSet::GetElements() const { return allElements; }
void AccessingSet::Insert(const vector<ArrayDimension>& element)
{
vector<vector<ArrayDimension>> tails;
FindUncovered(element, tails);
allElements.insert(allElements.end(), tails.begin(), tails.end());
}
AccessingSet AccessingSet::Union(const AccessingSet& source) {
AccessingSet result;
for (auto& element : source.GetElements())
result.Insert(element);
for (auto& element : allElements)
result.Insert(element);
return result;
}
AccessingSet AccessingSet::Intersect(const AccessingSet& secondSet) const
{
vector<vector<ArrayDimension>> result;
if (secondSet.GetElements().empty() || this->allElements.empty())
return AccessingSet(result);
for (const auto& element : allElements)
{
if (secondSet.ContainsElement(element))
result.push_back(element);
else
{
vector<vector<ArrayDimension>> coveredBy;
secondSet.FindCoveredBy(element, coveredBy);
if (!coveredBy.empty())
result.insert(result.end(), coveredBy.begin(), coveredBy.end());
}
}
return AccessingSet(result);
}
AccessingSet AccessingSet::Diff(const AccessingSet& secondSet) const
{
if (secondSet.GetElements().empty() || allElements.empty())
return *this;
AccessingSet intersection = this->Intersect(secondSet);
AccessingSet uncovered = *this;
vector<vector<ArrayDimension>> result;
for (const auto& element : intersection.GetElements())
{
vector<vector<ArrayDimension>> current_uncovered;
uncovered.FindUncovered(element, current_uncovered);
uncovered = AccessingSet(current_uncovered);
}
return uncovered;
}
bool operator!=(const ArrayDimension& lhs, const ArrayDimension& rhs)
{
return !(lhs.start == rhs.start && lhs.step == rhs.step && lhs.tripCount == rhs.tripCount);
}
bool operator!=(const AccessingSet& lhs, const AccessingSet& rhs)
{
for (size_t i = 0; i < lhs.allElements.size(); i++)
for (size_t j = 0; j < lhs.allElements[i].size(); j++)
if (lhs.allElements[i][j] != rhs.allElements[i][j])
return true;
return false;
}
bool operator!=(const ArrayAccessingIndexes& lhs, const ArrayAccessingIndexes& rhs)
{
if (lhs.size() != rhs.size())
return true;
for (auto& [key, value] : lhs)
if (rhs.find(key) == rhs.end())
return true;
return false;
}