init
This commit is contained in:
587
electrochemistry/echem/neb/neb.py
Normal file
587
electrochemistry/echem/neb/neb.py
Normal file
@@ -0,0 +1,587 @@
|
||||
from __future__ import annotations
|
||||
from ase.mep.neb import NEB
|
||||
from ase.optimize.sciopt import OptimizerConvergenceError
|
||||
from ase.io.trajectory import Trajectory, TrajectoryWriter
|
||||
from ase.io import read
|
||||
from echem.neb.calculators import JDFTx
|
||||
from echem.neb.autoneb import AutoNEB
|
||||
from echem.io_data.jdftx import Ionpos, Lattice, Input
|
||||
from echem.core.useful_funcs import shell
|
||||
from pathlib import Path
|
||||
import numpy as np
|
||||
import logging
|
||||
import os
|
||||
from typing import Literal, Callable
|
||||
logging.basicConfig(filename='logfile_NEB.log', filemode='a', level=logging.INFO,
|
||||
format="%(asctime)s %(levelname)8s %(name)14s %(message)s",
|
||||
datefmt='%d/%m/%Y %H:%M:%S')
|
||||
|
||||
|
||||
class NEBOptimizer:
|
||||
def __init__(self,
|
||||
neb: NEB,
|
||||
trajectory_filepath: str | Path | None = None,
|
||||
append_trajectory: bool = True):
|
||||
|
||||
self.neb = neb
|
||||
self.logger = logging.getLogger(self.__class__.__name__ + ':')
|
||||
self.E_image_first = None
|
||||
self.E_image_last = None
|
||||
|
||||
if trajectory_filepath is not None:
|
||||
if append_trajectory:
|
||||
self.trj_writer = TrajectoryWriter(trajectory_filepath, mode='a')
|
||||
else:
|
||||
self.trj_writer = TrajectoryWriter(trajectory_filepath, mode='w')
|
||||
else:
|
||||
self.trj_writer = None
|
||||
|
||||
def converged(self, fmax):
|
||||
return self.neb.get_residual() <= fmax
|
||||
|
||||
def update_positions(self, X):
|
||||
positions = X.reshape((self.neb.nimages - 2) * self.neb.natoms, 3)
|
||||
self.neb.set_positions(positions)
|
||||
|
||||
def get_forces(self):
|
||||
return self.neb.get_forces().reshape(-1)
|
||||
|
||||
def get_energies(self, first: bool = False, last: bool = False):
|
||||
if not first and not last:
|
||||
return [image.calc.E for image in self.neb.images[1:-1]]
|
||||
elif first and not last:
|
||||
return [image.calc.E for image in self.neb.images[:-1]]
|
||||
elif not first and last:
|
||||
return [image.calc.E for image in self.neb.images[1:]]
|
||||
elif first and last:
|
||||
return [image.calc.E for image in self.neb.images]
|
||||
|
||||
def dump_trajectory(self):
|
||||
if self.trj_writer is not None:
|
||||
for image in self.neb.images:
|
||||
self.trj_writer.write(image)
|
||||
|
||||
def dump_positions_vasp(self, prefix='last_img'):
|
||||
length = len(str(self.neb.nimages + 1))
|
||||
for i, image in enumerate(self.neb.images):
|
||||
image.write(f'{prefix}_{str(i).zfill(length)}.vasp', format='vasp')
|
||||
|
||||
def set_step_in_calculators(self, step, first: bool = False, last: bool = False):
|
||||
if not first and not last:
|
||||
for image in self.neb.images[1:-1]:
|
||||
image.calc.global_step = step
|
||||
elif first and not last:
|
||||
for image in self.neb.images[:-1]:
|
||||
image.calc.global_step = step
|
||||
elif not first and last:
|
||||
for image in self.neb.images[1:]:
|
||||
image.calc.global_step = step
|
||||
elif first and last:
|
||||
for image in self.neb.images:
|
||||
image.calc.global_step = step
|
||||
|
||||
def run_static(self,
|
||||
fmax: float = 0.1,
|
||||
max_steps: int = 100,
|
||||
alpha: float = 0.02,
|
||||
dE_max: float = None,
|
||||
construct_calc_fn: Callable = None):
|
||||
self.logger.info('Static method of optimization was chosen')
|
||||
max_new_images_at_step = 1
|
||||
min_steps_after_insertion = 3
|
||||
steps_after_insertion = 0
|
||||
|
||||
if dE_max is not None:
|
||||
self.logger.info(f'AutoNEB with max {dE_max} eV difference between images was set')
|
||||
self.logger.info(f'Initial number of images is {self.neb.nimages}, '
|
||||
f'including initial and final images')
|
||||
|
||||
if max_steps < 1:
|
||||
raise ValueError('max_steps must be greater or equal than one')
|
||||
|
||||
if dE_max is not None:
|
||||
self.set_step_in_calculators(0, first=True, last=True)
|
||||
self.E_image_first = self.neb.images[0].get_potential_energy()
|
||||
self.E_image_last = self.neb.images[-1].get_potential_energy()
|
||||
|
||||
length_step = len(str(max_steps))
|
||||
#X = self.neb.get_positions().reshape(-1)
|
||||
for step in range(max_steps):
|
||||
self.dump_trajectory()
|
||||
self.dump_positions_vasp(prefix=f'Step-{step}-1-')
|
||||
if dE_max is not None:
|
||||
self.set_step_in_calculators(step, first=True, last=True)
|
||||
else:
|
||||
self.set_step_in_calculators(step)
|
||||
|
||||
F = self.get_forces()
|
||||
self.logger.info(f'Step: {step:{length_step}}. Energies = '
|
||||
f'{[np.round(en, 4) for en in self.get_energies()]}')
|
||||
|
||||
R = self.neb.get_residual()
|
||||
if R <= fmax:
|
||||
self.logger.info(f'Step: {step:{length_step}}. Optimization terminates successfully. Residual R = {R:.4f}')
|
||||
return True
|
||||
else:
|
||||
self.logger.info(f'Step: {step:{length_step}}. Residual R = {R:.4f}')
|
||||
|
||||
X = self.neb.get_positions().reshape(-1)
|
||||
X += alpha * F
|
||||
self.update_positions(X)
|
||||
self.dump_positions_vasp(prefix=f'Step:-{step}-2-')
|
||||
|
||||
if dE_max is not None:
|
||||
energies = self.get_energies(first=True, last=True)
|
||||
self.logger.debug(f'Energies raw: {energies}')
|
||||
self.logger.info(f'Step: {step:{length_step}}. Energies = '
|
||||
f'{[np.round(en, 4) for en in energies]}')
|
||||
diff = np.abs(np.diff(energies))
|
||||
self.logger.debug(f'diff: {diff}')
|
||||
idxs = np.where(diff > dE_max)[0]
|
||||
self.logger.debug(f'Idxs where diff > dE_max: {idxs}')
|
||||
|
||||
if len(idxs) > max_new_images_at_step:
|
||||
idxs = np.flip(np.argsort(diff))[:max_new_images_at_step]
|
||||
self.logger.debug(f'Images will be added for idxs {idxs} since more than {max_new_images_at_step} '
|
||||
f'diffs were large than {dE_max} eV')
|
||||
|
||||
if (len(idxs) > 0) and (steps_after_insertion > min_steps_after_insertion):
|
||||
steps_after_insertion = -1
|
||||
for idx in reversed(idxs):
|
||||
self.logger.debug(f'Start working with idx: {idx}')
|
||||
length_prev = len(str(len(self.neb.images) - 1))
|
||||
length_new = len(str(len(self.neb.images)))
|
||||
self.logger.debug(f'{length_prev=} {length_new=}')
|
||||
tmp_images = [self.neb.images[idx].copy(),
|
||||
self.neb.images[idx].copy(),
|
||||
self.neb.images[idx + 1].copy()]
|
||||
tmp_neb = NEB(tmp_images)
|
||||
tmp_neb.interpolate()
|
||||
images_new = self.neb.images.copy()
|
||||
images_new.insert(idx + 1, tmp_neb.images[1])
|
||||
|
||||
energies = self.get_energies(first=True, last=True)
|
||||
energies.insert(idx + 1, None)
|
||||
self.neb = NEB(images_new,
|
||||
k=self.neb.k[0],
|
||||
climb=self.neb.climb)
|
||||
self.dump_positions_vasp(prefix=f'Step: {step} 3 ')
|
||||
|
||||
zfill_length = len(str(len(self.neb.images)))
|
||||
for k, image in enumerate(self.neb.images):
|
||||
self.logger.debug(f'Trying to attach the calc to {k} image '
|
||||
f'with the length: {len(str(len(self.neb.images)))}')
|
||||
image.calc = construct_calc_fn(str(k).zfill(zfill_length))
|
||||
image.calc.E = energies[k]
|
||||
|
||||
if length_prev != length_new:
|
||||
self.logger.debug('Trying to rename due to the change in length')
|
||||
for i in range(0, self.neb.nimages):
|
||||
shell(f'mv {str(i).zfill(length_prev)} {str(i).zfill(length_new)}')
|
||||
self.logger.debug(f'Trying to execute the following command: '
|
||||
f'mv {str(i).zfill(length_prev)} {str(i + 1).zfill(length_new)}')
|
||||
|
||||
self.logger.debug('Trying to rename due to the insertion')
|
||||
for i in range(len(self.neb.images) - 2, idx, -1):
|
||||
self.logger.debug(f'{i=}')
|
||||
self.logger.debug(f'Trying to execute the following command: '
|
||||
f'mv {str(i).zfill(length_new)} {str(i + 1).zfill(length_new)}')
|
||||
shell(f'mv {str(i).zfill(length_new)} {str(i + 1).zfill(length_new)}')
|
||||
|
||||
self.logger.debug(f'Trying to create the new folder: {str(idx + 1).zfill(length_new)}')
|
||||
folder = Path(str(idx + 1).zfill(length_new))
|
||||
folder.mkdir()
|
||||
self.dump_positions_vasp(prefix=f'Step: {step} 4 ')
|
||||
|
||||
steps_after_insertion += 1
|
||||
self.logger.debug(f'Step after insertion: {steps_after_insertion}')
|
||||
|
||||
self.logger.warning(f'convergence was not achieved after max iterations = {max_steps}, '
|
||||
f'residual R = {R:.4f} > {fmax}')
|
||||
return False
|
||||
|
||||
def run_ode(self,
|
||||
fmax: float = 0.1,
|
||||
max_steps: int = 100,
|
||||
C1: float = 1e-2,
|
||||
C2: float = 2.0,
|
||||
extrapolation_scheme: Literal[1, 2, 3] = 3,
|
||||
h: float | None = None,
|
||||
h_min: float = 1e-10,
|
||||
R_max: float = 1e3,
|
||||
rtol: float = 0.1):
|
||||
"""
|
||||
fmax : float
|
||||
convergence tolerance for residual force
|
||||
max_steps : int
|
||||
maximum number of steps
|
||||
C1 : float
|
||||
sufficient contraction parameter
|
||||
C2 : float
|
||||
residual growth control (Inf means there is no control)
|
||||
extrapolation_scheme : int
|
||||
extrapolation style (3 seems the most robust)
|
||||
h : float
|
||||
initial step size, if None an estimate is used based on ODE12
|
||||
h_min : float
|
||||
minimal allowed step size
|
||||
R_max: float
|
||||
terminate if residual exceeds this value
|
||||
rtol : float
|
||||
relative tolerance
|
||||
"""
|
||||
|
||||
if max_steps < 2:
|
||||
raise ValueError('max_steps must be greater or equal than two')
|
||||
length = len(str(max_steps))
|
||||
|
||||
self.set_step_in_calculators(0)
|
||||
|
||||
F = self.get_forces()
|
||||
self.logger.info(f'Step: {0:{length}}. Energies = {[np.round(en, 4) for en in self.get_energies()]}')
|
||||
|
||||
R = self.neb.get_residual() # pick the biggest force
|
||||
|
||||
if R >= R_max:
|
||||
self.logger.info(f'Step: {0:{length}}. Residual {R:.4f} >= R_max {R_max}')
|
||||
raise OptimizerConvergenceError(f'Step: 0. Residual {R:.4f} >= R_max {R_max}')
|
||||
else:
|
||||
self.logger.info(f'Step: {0:{length}}. Residual R = {R:.4f}')
|
||||
|
||||
if h is None:
|
||||
h = 0.5 * rtol ** 0.5 / R # Chose a step size based on that force
|
||||
h = max(h, h_min) # Make sure the step size is not too big
|
||||
self.logger.info(f'Step: {0:{length}}. Step size h = {h}')
|
||||
|
||||
X = self.neb.get_positions().reshape(-1)
|
||||
|
||||
for step in range(1, max_steps):
|
||||
X_new = X + h * F # Pick a new position
|
||||
self.update_positions(X_new)
|
||||
|
||||
self.set_step_in_calculators(step)
|
||||
F_new = self.get_forces() # Calculate the new forces at this position
|
||||
self.logger.info(f'Step: {step:{length}}. Energies = {[np.round(en, 4) for en in self.get_energies()]}')
|
||||
|
||||
R_new = self.neb.get_residual()
|
||||
self.logger.info(f'Step: {step:{length}}. At new coordinates R = {R:.4f} -> R_new = {R_new:.4f}')
|
||||
|
||||
e = 0.5 * h * (F_new - F) # Estimate the area under the forces curve
|
||||
err = np.linalg.norm(e, np.inf) # Error estimate
|
||||
|
||||
# Accept step if residual decreases sufficiently and/or error acceptable
|
||||
condition_1 = R_new <= R * (1 - C1 * h)
|
||||
condition_2 = R_new <= R * C2
|
||||
condition_3 = err <= rtol
|
||||
accept = condition_1 or (condition_2 and condition_3)
|
||||
self.logger.info(f'Step: {step:{length}}. {"R_new <= R * (1 - C1 * h)":26} \t is {condition_1}')
|
||||
self.logger.info(f'Step: {step:{length}}. {"R_new <= R * C2":26} is {condition_2}')
|
||||
self.logger.info(f'Step: {step:{length}}. {"err <= rtol":26} is {condition_3}')
|
||||
|
||||
# Pick an extrapolation scheme for the system & find new increment
|
||||
y = F - F_new
|
||||
if extrapolation_scheme == 1: # F(xn + h Fp)
|
||||
h_ls = h * (F @ y) / (y @ y)
|
||||
elif extrapolation_scheme == 2: # F(Xn + h Fp)
|
||||
h_ls = h * (F @ F_new) / (F @ y + 1e-10)
|
||||
elif extrapolation_scheme == 3: # min | F(Xn + h Fp) |
|
||||
h_ls = h * (F @ y) / (y @ y + 1e-10)
|
||||
else:
|
||||
raise ValueError(f'Invalid extrapolation_scheme: {extrapolation_scheme}. Must be 1, 2 or 3')
|
||||
|
||||
if np.isnan(h_ls) or h_ls < h_min: # Rejects if increment is too small
|
||||
h_ls = np.inf
|
||||
|
||||
h_err = h * 0.5 * np.sqrt(rtol / err)
|
||||
|
||||
if accept:
|
||||
self.logger.info(f'Step: {step:{length}}. The displacement is accepted')
|
||||
|
||||
X = X_new
|
||||
R = R_new
|
||||
F = F_new
|
||||
|
||||
self.dump_trajectory()
|
||||
self.dump_positions_vasp()
|
||||
|
||||
# We check the residuals again
|
||||
if self.converged(fmax):
|
||||
self.logger.info(f"Step: {step:{length}}. Optimization terminates successfully")
|
||||
return True
|
||||
|
||||
if R > R_max:
|
||||
self.logger.info(f"Step: {step:{length}}. Optimization fails, R = {R:.4f} > R_max = {R_max}")
|
||||
return False
|
||||
|
||||
# Compute a new step size.
|
||||
# Based on the extrapolation and some other heuristics
|
||||
h = max(0.25 * h, min(4 * h, h_err, h_ls)) # Log steep-size analytic results
|
||||
self.logger.info(f'Step: {step:{length}}. New step size h = {h}')
|
||||
|
||||
else:
|
||||
self.logger.info(f'Step: {step:{length}}. The displacement is rejected')
|
||||
h = max(0.1 * h, min(0.25 * h, h_err, h_ls))
|
||||
self.logger.info(f'Step: {step:{length}}. New step size h = {h}')
|
||||
|
||||
if abs(h) < h_min: # abort if step size is too small
|
||||
self.logger.info(f'Step: {step:{length}}. Stop optimization since step size h = {h} < h_min = {h_min}')
|
||||
return True
|
||||
|
||||
self.logger.warning(f'Step: {step:{length}}. Convergence was not achieved after max iterations = {max_steps}')
|
||||
return True
|
||||
|
||||
|
||||
class NEB_JDFTx:
|
||||
def __init__(self,
|
||||
path_jdftx_executable: str | Path,
|
||||
nimages: int = 5,
|
||||
input_filepath: str | Path = 'input.in',
|
||||
output_name: str = 'output.out',
|
||||
input_format: Literal['jdftx', 'vasp'] = 'jdftx',
|
||||
cNEB: bool = True,
|
||||
spring_constant: float = 5.0,
|
||||
interpolation_method: Literal['linear', 'idpp'] = 'idpp',
|
||||
restart: Literal[False, 'from_traj', 'from_vasp'] = False,
|
||||
dE_max: float = None):
|
||||
|
||||
if isinstance(path_jdftx_executable, str):
|
||||
self.path_jdftx_executable = Path(path_jdftx_executable)
|
||||
else:
|
||||
self.path_jdftx_executable = path_jdftx_executable
|
||||
|
||||
if isinstance(input_filepath, str):
|
||||
input_filepath = Path(input_filepath)
|
||||
self.jdftx_input = Input.from_file(input_filepath)
|
||||
|
||||
self.nimages = nimages
|
||||
self.path_rundir = Path.cwd()
|
||||
self.output_name = output_name
|
||||
self.input_format = input_format.lower()
|
||||
self.cNEB = cNEB
|
||||
self.restart = restart
|
||||
self.spring_constant = spring_constant
|
||||
self.interpolation_method = interpolation_method.lower()
|
||||
self.dE_max = dE_max
|
||||
self.optimizer = None
|
||||
self.logger = logging.getLogger(self.__class__.__name__ + ':')
|
||||
|
||||
def prepare(self):
|
||||
length = len(str(self.nimages + 1))
|
||||
|
||||
if self.restart is False:
|
||||
if self.input_format == 'jdftx':
|
||||
init_ionpos = Ionpos.from_file('init.ionpos')
|
||||
init_lattice = Lattice.from_file('init.lattice')
|
||||
final_ionpos = Ionpos.from_file('final.ionpos')
|
||||
final_lattice = Lattice.from_file('final.lattice')
|
||||
init_poscar = init_ionpos.convert('vasp', init_lattice)
|
||||
init_poscar.to_file('init.vasp')
|
||||
final_poscar = final_ionpos.convert('vasp', final_lattice)
|
||||
final_poscar.to_file('final.vasp')
|
||||
|
||||
initial = read('init.vasp', format='vasp')
|
||||
final = read('final.vasp', format='vasp')
|
||||
|
||||
images = [initial]
|
||||
images += [initial.copy() for _ in range(self.nimages)]
|
||||
images += [final]
|
||||
|
||||
neb = NEB(images,
|
||||
k=self.spring_constant,
|
||||
climb=self.cNEB)
|
||||
neb.interpolate(method=self.interpolation_method)
|
||||
|
||||
for i, image in enumerate(images):
|
||||
image.write(f'start_img_{str(i).zfill(length)}.vasp', format='vasp')
|
||||
|
||||
else:
|
||||
images = []
|
||||
if self.restart == 'from_traj':
|
||||
trj = Trajectory('NEB_trajectory.traj')
|
||||
n_iter = int(len(trj) / (self.nimages + 2))
|
||||
for i in range(self.nimages + 2):
|
||||
trj[(n_iter - 1) * (self.nimages + 2) + i].write(f'start_img_{str(i).zfill(length)}.vasp',
|
||||
format='vasp')
|
||||
trj.close()
|
||||
|
||||
if self.restart == 'from_traj' or self.restart == 'from_vasp':
|
||||
for i in range(self.nimages + 2):
|
||||
img = read(f'start_img_{str(i).zfill(length)}.vasp', format='vasp')
|
||||
images.append(img)
|
||||
|
||||
else:
|
||||
raise ValueError(f'restart must be False or \'from_traj\', '
|
||||
f'or \'from_vasp\' but you set {self.restart=}')
|
||||
|
||||
neb = NEB(images,
|
||||
k=self.spring_constant,
|
||||
climb=self.cNEB)
|
||||
|
||||
for i in range(self.nimages):
|
||||
folder = Path(str(i+1).zfill(length))
|
||||
folder.mkdir(exist_ok=True)
|
||||
if self.dE_max is not None:
|
||||
self.logger.debug(f'Trying to create the folder {str(0).zfill(length)}')
|
||||
folder = Path(str(0).zfill(length))
|
||||
folder.mkdir(exist_ok=True)
|
||||
self.logger.debug(f'Trying to create the folder {str(self.nimages + 1).zfill(length)}')
|
||||
folder = Path(str(self.nimages + 1).zfill(length))
|
||||
folder.mkdir(exist_ok=True)
|
||||
|
||||
for i, image in enumerate(images[1:-1]):
|
||||
image.calc = JDFTx(self.path_jdftx_executable,
|
||||
path_rundir=self.path_rundir / str(i+1).zfill(length),
|
||||
commands=self.jdftx_input.commands)
|
||||
|
||||
if self.dE_max is not None:
|
||||
images[0].calc = JDFTx(self.path_jdftx_executable,
|
||||
path_rundir=self.path_rundir / str(0).zfill(length),
|
||||
commands=self.jdftx_input.commands)
|
||||
images[-1].calc = JDFTx(self.path_jdftx_executable,
|
||||
path_rundir=self.path_rundir / str(self.nimages + 1).zfill(length),
|
||||
commands=self.jdftx_input.commands)
|
||||
|
||||
self.optimizer = NEBOptimizer(neb=neb,
|
||||
trajectory_filepath='NEB_trajectory.traj')
|
||||
|
||||
def run(self,
|
||||
fmax: float = 0.1,
|
||||
method: Literal['ode', 'static'] = 'ode',
|
||||
max_steps: int = 100,
|
||||
**kwargs):
|
||||
|
||||
self.prepare()
|
||||
|
||||
if self.dE_max is not None:
|
||||
def calc_fn(folder_name) -> JDFTx:
|
||||
return JDFTx(self.path_jdftx_executable,
|
||||
path_rundir=self.path_rundir / folder_name,
|
||||
commands=self.jdftx_input.commands)
|
||||
else:
|
||||
calc_fn = None
|
||||
if method == 'ode':
|
||||
self.optimizer.run_ode(fmax, max_steps)
|
||||
elif method == 'static':
|
||||
self.optimizer.run_static(fmax, max_steps, dE_max=self.dE_max, construct_calc_fn=calc_fn)
|
||||
else:
|
||||
raise ValueError(f'Method must be ode or static but you set {method=}')
|
||||
|
||||
|
||||
class AutoNEB_JDFTx:
|
||||
"""
|
||||
Class for running AutoNEB with JDFTx calculator
|
||||
|
||||
Parameters:
|
||||
|
||||
prefix: string or Path
|
||||
path to folder with initial files. Basically could be os.getcwd()
|
||||
In this folder required:
|
||||
1) init.vasp file with initial configuration
|
||||
2) final.vasp file with final configuration
|
||||
3) in file with JDFTx calculation parameters
|
||||
path_jdftx_executable: string or Path
|
||||
path to jdftx executable
|
||||
n_start: int
|
||||
Starting number of images between starting and final for NEB
|
||||
n_max: int
|
||||
Maximum number of images, including starting and final
|
||||
climb: boolean
|
||||
Whether it is necessary to use cNEB or not
|
||||
fmax: float or list of floats
|
||||
The maximum force along the NEB path
|
||||
maxsteps: int
|
||||
The maximum number of steps in each NEB relaxation.
|
||||
If a list is given the first number of steps is used in the build-up
|
||||
and final scan phase;
|
||||
the second number of steps is used in the CI step after all images
|
||||
have been inserted.
|
||||
k: float
|
||||
The spring constant along the NEB path
|
||||
method: str (see neb.py)
|
||||
Choice betweeen three method:
|
||||
'aseneb', standard ase NEB implementation
|
||||
'improvedtangent', published NEB implementation
|
||||
'eb', full spring force implementation (default)
|
||||
optimizer: str or object
|
||||
Set optimizer for NEB: FIRE, BFGS or NEB
|
||||
space_energy_ratio: float
|
||||
The preference for new images to be added in a big energy gab
|
||||
with a preference around the peak or in the biggest geometric gab.
|
||||
A space_energy_ratio set to 1 will only considder geometric gabs
|
||||
while one set to 0 will result in only images for energy
|
||||
resolution.
|
||||
interpolation_method: string
|
||||
method for interpolation
|
||||
smooth_curve: boolean
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
prefix,
|
||||
path_jdftx_executable,
|
||||
n_start=3,
|
||||
n_simul=3,
|
||||
n_max=10,
|
||||
climb=True,
|
||||
fmax=0.05,
|
||||
maxsteps=100,
|
||||
k=0.1,
|
||||
restart=False,
|
||||
method='eb',
|
||||
optimizer='FIRE',
|
||||
space_energy_ratio=0.5,
|
||||
interpolation_method='idpp',
|
||||
smooth_curve=False):
|
||||
self.restart = restart
|
||||
self.path_jdftx_executable = path_jdftx_executable
|
||||
self.prefix = Path(prefix)
|
||||
self.n_start = n_start
|
||||
self.n_max = n_max
|
||||
self.commands = Input.from_file(Path(prefix) / 'in').commands
|
||||
self.interpolation_method = interpolation_method
|
||||
self.autoneb = AutoNEB(self.attach_calculators,
|
||||
prefix=prefix,
|
||||
n_simul=n_simul,
|
||||
n_max=n_max,
|
||||
climb=climb,
|
||||
fmax=fmax,
|
||||
maxsteps=maxsteps,
|
||||
k=k,
|
||||
method=method,
|
||||
space_energy_ratio=space_energy_ratio,
|
||||
world=None, parallel=False, smooth_curve=smooth_curve,
|
||||
interpolate_method=interpolation_method, optimizer=optimizer)
|
||||
|
||||
def prepare(self):
|
||||
if not self.restart:
|
||||
initial = read(self.prefix / 'init.vasp', format='vasp')
|
||||
final = read(self.prefix / 'final.vasp', format='vasp')
|
||||
images = [initial]
|
||||
if self.n_start != 0:
|
||||
images += [initial.copy() for _ in range(self.n_start)]
|
||||
images += [final]
|
||||
if self.n_start != 0:
|
||||
neb = NEB(images)
|
||||
neb.interpolate(method=self.interpolation_method)
|
||||
for i, image in enumerate(images):
|
||||
image.write(self.prefix / f'{i:03d}.traj', format='traj')
|
||||
image.write(self.prefix / f'{i:03d}.vasp', format='vasp')
|
||||
else:
|
||||
index_exists = [i for i in range(self.n_max) if
|
||||
os.path.isfile(self.prefix / f'{i:03d}.traj')]
|
||||
for i in index_exists:
|
||||
image = Trajectory(self.prefix / f'{i:03d}.traj')
|
||||
image[-1].write(self.prefix / f'{i:03d}.vasp', format='vasp')
|
||||
img = read(self.prefix / f'{i:03d}.vasp', format='vasp')
|
||||
img.write(self.prefix / f'{i:03d}.traj', format='traj')
|
||||
|
||||
def attach_calculators(self, images, indexes, iteration):
|
||||
for image, index in zip(images, indexes):
|
||||
path_rundir = self.autoneb.iter_folder / f'iter_{iteration}' / str(index)
|
||||
path_rundir.mkdir(exist_ok=True)
|
||||
image.calc = JDFTx(self.path_jdftx_executable,
|
||||
path_rundir=path_rundir,
|
||||
commands=self.commands)
|
||||
|
||||
def run(self):
|
||||
self.prepare()
|
||||
self.autoneb.run()
|
||||
Reference in New Issue
Block a user